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Abstract

In this paper we present a mesh compression method based on
a multiresolution decomposition whose detail coefficients have a
compact representation and thus smaller entropy than the original
mesh. Given an arbitrary triangular mesh with an irregular connec-
tivity, we use a hierarchical simplification scheme, which generates
a multiresolution model. By reversing the process we define a hi-
erarchical progressive refinement process, where a simple predic-
tion plus a correction is used for inserting vertices to form a finer
level. We show how the connectivity of an arbitrary triangulation
can be encoded efficiently by a coloring technique, and recovered
incrementally during the progressive reconstruction of the original
mesh.
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1 Introduction

The most common representation of 3D geometric models is trian-
gular meshes. Although they have had prominent representation in
computer graphics for a long time, only recently has more attention
been devoted to their compression [4, 19, 14, 20, 8, 18]. With the
increasing popularity of Web-based applications, compression and
streaming techniques are today more important than ever. The rich
knowledge available for data compression, and in particular for im-
ages [15], cannot be directly applied to triangular meshes, mainly
because arbitrary triangular meshes have no regular structure, as is
the case in image data for example.

Mesh compression algorithms are required to compress both the
geometrydata and theconnectivitydata. The geometry is repre-
sented by the set of coordinates of the mesh’s vertices. To enable
effective compression of the geometry, the coordinate values are
first quantized to a fixed number of bits. The connectivity data is
the vertex/triangle adjacency list, sometimes also referred to as the
topology. In a naive representation, the connectivity data is about
twice as large as the geometry data. Mesh compression algorithms
are normally required to use a lossless compression of the connec-
tivity data.

Current mesh compression methods are based on the triangle-
strips technique [4, 1, 7]. In [19, 20, 14, 8] the triangular mesh
is traversed along sequences of triangles, which look like peeled
strips. The vertices along the strips are encoded as displacement
vectors from a point extrapolated from previous vertices along the
strips. Touma and Gotsman [20] and independently Rossignac [14]
developed methods that compress the connectivity data to less than
2 bits per vertex on average. However, a successful compression of
the connectivity alone is not enough since then the compression of
geometric data dominates the results. Indeed, Denny and Sohler [5]
have shown that the connectivity of a given graph can be encoded in
zero bits by a permutation of a sufficiently large set of vertices. This

is an interesting theoretical result; encoding an arbitrary permuta-
tion of coordinates is, however, too expensive for a space-efficient
encoding of a mesh.

Current mesh compression methods are basically “flat”, or can
be applied to refine one discrete level of detail to the next [18]. They
do not have the desired property of a progressive mesh [9], in which
every prefix of the encoded data is a progressive approximation of
the original 3D shape. The progressiveness property is important to
compensate for low network bandwidth and transmission latency.
The compression method presented here is based on a multireso-
lution decomposition, which inherently has a progressive property.
However, unlike the progressive meshes, here the size of the data
that is required to faithfully recover the original mesh is compa-
rable to any known technique of mesh compression. Recently, a
new progressive meshes technique has been developed [13], where
a batch of vertex-split operations are encoded efficiently to yield a
compressed progressive mesh representation.

2 Multiresolution Decomposition

Multiresolution analysis and wavelets have matured as a versatile
tools for representing functions and analyzing features at multiple
levels of detail. In recent years they gained attention in the com-
puter graphics community, among various applications, also as a
mechanism to analyze 3D meshes [12]. The basic idea is to re-
cursively filter, or decompose a given shape into a lower resolution
segment and a higher resolution detailed segment (known as detail
coefficients). The motivation is that the low-resolution coarser ver-
sions of the shape are a good approximation of the original shape,
while the detail coefficients locally perturb the shape to contribute
the small details. If the decomposition is successful, many of the
detail coefficients are small and their contribution to the final shape
is minor. Many image compression methods are based on a thresh-
olding scheme that eliminates the insignificant detail coefficients
[15].

Multiresolution analysis methods for the compression of 3D
meshes have been applied only in terms of the number of triangles
representing the mesh at various levels of detail. However, loss-
less compression methods of 3D meshes, which compress in terms
of the total number of bits required to represent the mesh have not
been reported. In this paper we show a multiresolution analysis for
which the representation of a given mesh is compact at every level
of detail, and in particular for the original mesh.

Traditional wavelets are constructed over regular structures. The
construction of wavelets over arbitrary meshes is currently an in-
teresting challenge [10]. Pioneering work by Lounsbery et al. [12]
introduced subdivision wavelets defined over arbitrary surfaces, but
requires the mesh to have asubdivision connectivity. To overcome
this prerequisite Eck et al. [6], and recently also Lee et al. [11]
have developed remeshing techniques by which the arbitrary mesh
can be retriangulated into a subdivision connectivity, where the re-



fined mesh is guaranteed to converge to the original shape within a
specified tolerance. Yet, this two-step technique does not provide
the means to fully restore the original mesh. It should be empha-
sized that mesh compression techniques are required to restore the
original connectivity. Indeed, most of the efforts of the mesh com-
pression methods have been invested in a compact encoding of the
unstructured connectivity of the triangulation [14, 20, 8, 18].

In this paper we show a lossless compression method based on
a multiresolution decomposition where the detail coefficients have
a compact representation and thus smaller entropy than the origi-
nal mesh. Similarly to [10], we use a hierarchical simplification
scheme, which generates a multiresolution model of the given tri-
angular mesh. By reversing the process we define a hierarchical
progressive refinement process, where a simple prediction plus a
correction is used for reconstructing vertices to form a finer level.
Furthermore, the connectivity of triangulation is encoded efficiently
and recovered incrementally during the progressive reconstruction
of the original mesh.

3 Prediction and Vertex Insertion

Assume that we start with an abstract setMn of samples. The set
can be partitioned into two setsMn�1 andWn, which are referred
to as wavelet subsets. By assembling the two subsets, the original
setMn can be recovered. Using the correlation that exists in the
set, one can try to predict the setWn using an abstract predictorP ,
in the hope thatP (Mn�1) is close toWn. Then, we can define new
wavelet coefficients aswn = Wn 	 P (Mn�1). Now, the original
setMn is reassembled byMn =Mn�1 � (P (Mn�1)�wn)). By
iterating this process the original set can be represented by the set
fM0; wn:::w1g. If the prediction is successful, the coefficientswn
have a small magnitude and the new representation has a smaller
entropy than the representation of the original setMn. Such a pre-
diction technique is used as one of the building blocks in thelifting
scheme[17] as well as in multigrid methods [3].

Assuming the original mesh has a subdivision connectivity, dif-
ferent subdivision schemes can be used as good prediction opera-
tors. The original meshMn can be decomposed intoMn�1 and
Wn by applying some decimation algorithm over its vertices [16],
whereWn consists of the set of removed vertices, andMn�1 is the
simplified mesh. Then by interpolating over the triangles ofMn�1

we create a set of pointsP (Mn�1), which serves as a prediction
for the setWn. The displacement vectors between the removed
vertices and the interpolated points are the shorter coefficientswn.

The key idea is to construct a multiresolution of an arbitrary
mesh with irregular connectivity. Unlike traditional wavelets, here
the domain is unstructured, and therefore the refinement is not ap-
plied uniformly during the reconstruction stage. An interpolation
scheme predicts a point to which we add a displacement vector to
recover a vertexp. This new vertex is inserted into the triangulation
while restoring its connectivity inMi+1. Note that recovering the
original connectivity is necessary to correctly decode the data en-
coded over the representation ofMi+1. This will become clearer in
the next section where we show how to encode and decode a given
mesh.

4 Encoding and Decoding

The series of vertex insertion operations, which reconstruct a given
mesh, is found by reversing a mesh decimation procedure [16].
Given a meshMi we apply a simplification algorithm that iter-
atively removes sets of verticesui to yield a simplified version
Mi�1. However, at each iteration the selected setui must be an
independent set[2], that is, there is no edge connecting any two

vertices inui. Removing a vertex from a triangulation requires re-
moving all the edges connected to the vertex and retriangulating
the hole with a new set of triangles. Let us define the triangles that
cover a given hole as apatch. Once all the holes are triangulated,
patches are interpolated to predict a set of points, which serves as
a base for the displacement vector to the removed vertices. The
predicted points are quantized so the displacement vectors can be
represented by a small number of bits, with smaller entropy than the
original vertices. For each patch, one displacement vector is stored.

The key idea is to encode the triangles of a patch by means of
coloring them, such that the decoder can detect the patches during
the reconstruction stage based on the triangle colors. Thus, adja-
cent patches cannot be assigned the same color, where two patches
are said to be adjacent if they share an edge. The triangles ofMi

are recursively traversed and each patch is assigned a color that is
different from the colors assigned to its adjacent patches. Since the
patches do not tessellate the entire mesh, we use a null color for the
triangles that are not included in any patch. The rest of the triangles
are colored in only three colors (see Figure 1). Three colors are
not always enough, but in practice such cases are rare, and can be
avoided by giving up the removal of some vertices.

This coloring technique requires 2 bits per triangle. Thus, the
cost of encoding a vertex is the cost of coloring the triangles of the
patch created by its removal. Assuming the degree of a vertex is 6,
then its removal requires coloring four triangles, that is, 8 bits per
vertex removal. Note that there is some overhead since some trian-
gles are not included in any patch. To reduce this overhead, when
selecting the vertices to be removed we strive to create a maximal
independent set.

The above coloring technique can be improved by triangulat-
ing the patches by a dependent triangulation that can be encoded
with only one bit per triangle. A hexagonal patch (the most pop-
ular patches in common triangulation) is triangulated by the three
edges of the shape of the letterZ (see Figure 2(1-2)). Then its two
middle triangles are encoded with a ’1’ bit (purple in the figure)
and the two external triangles with a ’0’ bit (white in the figure).
Pentagons are triangulated with three triangles where the middle
one is encoded with a ’1’ and the others two with a ’0’. Here the
middle triangleTm must be selected such that the two other trian-
gles share a vertex with the smallest angle inTm. For an n-gon
the concept is the same; the sequences of ‘alternating’ triangles are
colored with ’1’s and the two externals with ’0’s (see Figure 2(3)).
While encoding adjacent patches we need to avoid edge-adjacent
’1’-encoded triangles. Recovery of the patches is guaranteed since
the sequence of adjacent ’1’s has a known shape, from which the
two external ’0’-encoded triangles are uniquely recovered and, as a
consequence, the boundary of the patch is also uniquely recovered.
Note that with this technique, a quadrilateral cannot be encoded.
However, this encoding requires only one bit per triangle. Figure 3
illustrates a 2-coloring of a mesh.

A sequential order of the triangles ofMi is defined by a breadth-
first traversal of the triangles. One bit is associated with each tri-
angle and stored in a binary vector, which represents the colors of
the triangles. The length of the vector isjMij; the number of tri-
angles of the mesh,Mi. The vector is then compressed by some
lossless compression technique. In our implementation we used an
LZ encoder.

During reconstruction, for each recovered patch we remove its
triangles and predict the location of the vertex that was removed
when the patch was created. By adding the associated displacement
vector to the predicted point, the original location of the vertex is
recovered. Then we simply connect the vertices of the patch to the
inserted vertex.
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Figure 1: The 4-color encoding scheme. (1) The original mesh consists of an arbitrary triangulation. The red circles are the vertices selected
to be removed - the independent set. (2) The mesh after removing the red vertices and triangulating the hole. The new triangles are colored
in three colors; the rest remains white. See the color plates.
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Figure 4: The prediction scheme.

5 The Prediction Operator

Given a patch the prediction operator predicts the location of a new
vertex based on the known vertices of the patchfvig and their im-
mediate neighbors. Lacking any prior knowledge, the best guess
seems to assume the surface to be smooth and use a prediction
based upon a local polynomial interpolant with respect to a lo-
cal reference plane. The basic idea is illustrated in Figure 4: let
vc = 1

n

P
n

i=1
vi, andP be the predicted point “above”vc. If the

encoded vertexv is indeed closer toP than tovc, then encoding
v � P is better thanv � vc. However, this is not necessarily the
case. Assume the patch has a diameterh and the surface is locally
smooth,kP � vck = O(h2), while kv�Pk as well askv� vck is
O(h). Therefore, the prediction of the polynomial interpolant does
not pay off wheneverh is either small or large. Since the decom-
pression time is an important factor, we make a simple and effective
prediction by means ofvc.

6 Results

As discussed in Section 4, the patches can be colored by using either
four colors or two. The 4-color technique requires 2 bits per triangle
and the 2-color technique only 1 bit per triangle. Denoting bym

the number of bits used to color the triangles, the cost of encoding
ad-vertex ism(d� 2) bits, since the patch created by removing a
d-degree vertex consists of onlyd� 2 triangles. Using the 2-color
technique, the removal of a 6-degree vertex requires4 bits, and a
5-degree vertex only3 bits.

From the Euler formula we know that the average of the degrees
is always close to six. However, the distribution of the vertex’s
degrees can vary. If the mesh of a given level of detail consists
mainly of vertices of degree 5 and higher, the 2-color technique is
very effective. However, if the mesh consists mainly of vertices
of degree 4 and 3, the 4-color technique is more effective since
the 2-color technique cannot be applied to low degree vertices. On
the other hand, since the patches created by the removal of low
degree vertices consists of one or two triangles only, the cost of
2 bits per triangle means that the cost of encoding the insertion
is only 2-4 bits. Thus, roughly speaking, if the mesh consists of
either 5-6 degree vertices or 3-4 degree vertices, the encoding of
the connectivity requires no more than 4 bits per vertex. Since the
independence set is not optimal, there are many triangles that are
not included in any of the patches. Thus, in practice the cost is
higher than 4 bits per vertex (see Table 1). In any case the stream of
bits that colors the mesh is further compressed by an LZ encoder.
In our implementation the coloring technique is selected according
to the distribution of degrees in the given level of detail. See Figure
5 which shows the first four intermediate levels and their coloring.

Our 2-coloring encoding technique requires only one bit per tri-
angle. However, in terms of the number of bits per vertex the cost is
at least 4 bits per vertex, or 2 bits per triangle. Note that the number
of triangles in the entire hierarchy is about three times the number
of triangles in the original mesh. This cost is about that reported for
the progressive forest split [18], almost twice more than reported in
[20, 8], and eight times better than the cost of a vertex split of the
progressive mesh [9].

Regarding the compression of geometry, the stream of the dis-
placement is encoded using Huffman encoding. We have tested the
results with 12-bit precision per coordinate. Table 2 compares our
results with those of Touma and Gotsman’s technique [20], which
are the best published so far. On average our results are only about
8% higher than those achieved by Touma and Gotsman (see Table
2). It should be emphasized that the exact compression values are
dependent on the specific implementation of the Huffman encoder.
However, we believe that the exact compression ratios are not cru-
cial as the superiority of our technique is in its progressiveness.
We should emphasize that with respect to the original VRML mod-
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Figure 2: The 2-color encoding scheme. (1) A 2-colored hexagon. Note the ’Z’ shape of the triangulation, which implies on the two end
triangles of the patch. (2) Another legal 2-coloring of the same hexagonal patch. (3) A 2-colored 10-gon patch. The ’Z’ (alternating)
triangulation implies on the two end triangles of the patch. (4) An illegal triangulation. The ’Z’ is mirrored.
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Figure 3: The 2-color encoding scheme. (1) The original mesh consists of an arbitrary triangulation. The red circles are the vertices selected
to be removed - the independent set. (2) The mesh after removing the red vertices and triangulating the hole.

els, Touma and Gotsman’s and our technique achieve an average of
3.1% and 3.4% compression ratios, respectively.

7 Conclusions

The progressive compression method presented above is based on
the space-efficient encoding of a vertex insertion refinement pro-
cess, where a mesh coloring technique encodes the connectivity of
the intermediate meshes. Unlike previous compression methods,
which use a sequential linear prediction scheme to encode the dis-
placements, here we use a spatial predictor. The primary advantage
of our compression method is that it inherently has the feature of a
progressive mesh. Thus, the compressed data is a stream of vertex
insertions, which progressively refines an initial coarse mesh into
the original fine mesh. We showed that this property is achieved
without sacrificing the compression ratio that can be achieved by
non-progressive techniques.

The advantage of our technique is that it can deal with non-
manifold meshes without decomposing them first into a set of man-

ifold meshes. Since our technique is based on reversing the robust
vertex decimation operation, it can also deal well with boundary
polygons.

In our work we only tested models with no special attributes,
such as normal vectors, colors or texture coordinates. Encoding
such attributes is similar to that of the coordinates. If the attributes
have some spatial coherence as do the coordinates, the local predi-
cation function and the displacements are expected to behave simi-
larly to the coordinates. We will test this in our future work.
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Figure 5: The hole3 colored at different levels of detail. Note that in the first two levels it uses a 4-coloring, as most of the vertices are of
degree four or three, and a 2-coloring in the next two levels. See the color plates.
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Figure 6: Two models colored with the 2-color technique.
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Figure 2: The 4-color encoding scheme. (1) The original mesh consists of an arbitrary triangulation. The red circles are the vertices selected
to be removed - the independent set. (2) The mesh after removing the red vertices and triangulating the hole. The new triangles are colored
in three colors; the rest remains white.
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Figure 6: The hole3 colored at different levels of detail. Note that in the first two levels it uses a 4-coloring, as most of the vertices are of
degree four or three, and a 2-coloring in the next two levels.


