
~ Computer Graphics, Volume 23, Number 3, July 1989

Near Real-Time Shadow Generation Using BSP Trees

Norman Chin
Steven Feiner

Department of Computer Science
Columbia University

New York, NY 10027

Abstract

This paper describes an object-space shadow generation
algorithm for static polygonal environments illuminated by
movable point light sources. The algorithm can be easily
implemented on any graphics system that provides fast
polygon scan-conversion and achieves near real-time
performance for environments of modest size. It combines
elements of two kinds of current shadow generation
algorithms: two-pass object-space approaches and shadow
volume approaches. For each light source a Binary Space
Partitioning (BSP) tree is constructed that represents the
shadow volume of the polygons facing it. As each polygon's
contribution to a light source's shadow volume is determined,
the polygon's shadowed and lit fragments are computed by
filtering it down the shadow volume BSP tree. The polygonal
scene with its computed shadows can be rendered with any
polygon-based visible-surface algorithm. Since the shadow
volumes and shadows are computed in object space, they can
be used for further analysis of the scene. Pseudocode is
provided, along with pictures and timings from an interactive
implementation.

CR Categories and Subject Descriptors: 1.3.3 [Computer
Graphics]: Picture/Image Generation--Display algorithms;
1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling---Curve, surface, solid, and object
representations; 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism--Color, shading,
shadowing, and texture

General Terms: Algorithms

Additional Keywords and Phrases: shadows, shadow volumes,
BSP, binary space partitioning

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1989 AC M-O-89791- 312-4 / 89 /O07 /O099 $06.75

1 Introduction

One classic problem in 3D computer graphics is that of shadow
generation. Areas in shadow are those that are not visible from
a light source. The presence of shadows in an image helps
viewers to better understand the spatial relationships between
objects, is vital for applications such as architectural planning,
and, in general, increases the appearance of reality that a
picture provides. Unfortunately, current shadow generation
algorithms do not run fast enough for interactive performance,
except on special hardware [12]. Real-time alternatives to full
shadow generation typically involve tricks for transforming
polygons to create polygon shadows that are mapped onto one
or more infinite planes [4]. These " f a k e " shadows are not
properly clipped to the surfaces that they shadow and are not
blocked by intervening surfaces.

We present a shadow algorithm that achieves interactive
performance for polygonal environments of modest size when
implemented on a graphics system that provides fast polygon
scan conversion. After reviewing current shadow algorithms,
we describe how the new algorithm is related to them. Next,
we provide an overview of previous work on the BSP tree data
structure and algorithms on which the shadow algorithm is
based, and present a detailed description of how the new
algorithm works.

2 Previous Shadow Algorithms

Crow's classic paper on shadow generation [8] describes three
basic approaches: scanline shadow computation, the two-pass
object-space approach, and shadow volumes. Since Crow's
survey appeared, the taxonomy of shadow algorithms has been
broadened to include three more basic methods: a two-pass z-
buffer method [25], ray tracing [1, 24], and radiosity
approaches [7, 17]. Because the algorithm discussed here
combines the two-pass object-space approach with the
shadow-volume approach, we provide a brief introduction :o
both.

The two-pass object-space approach, developed by Atherton,
Weiler, and Greenberg [2] for arbitrary polygonal
environments, applies two passes of an object-space visible-
surface algorithm. The first pass, executed from the point of
view of the light source, splits polygons into pieces that are
visible from the light source (lit) and ones that are invisible
from the light source (shadowed). This is accomplished by

99

~ ~ S I G G R A P H '89, Boston, 31 July-4 August, 1989

transforming the polygons from the point of view of the light
source and clipping those polygons that are further away
against the clip window of those that are closer. Any part of a
polygon that lies within a closer polygon, as seen from the
light source, is in shadow. Lit polygon fragments are
transformed back into their original orientation and attached to
the original polygons as surface detail polygons. A second
pass through the visible-surface algorithm is then performed
from the point of view of the camera.

The shadow-volume approach involves the construction of a
"shadow volume" for each object facing the light source. The
shadow volume of an object is that volume bounded by the
object and a set of invisible "shadow polygons," all of which
face outward from the volume. A shadow polygon is created
by connecting two vectors emanating from the point light
source with the two vertices of one of the object's edges. The
polygon is bounded by the edge, and the pieces of the two light
source vectors that begin at the edge and continue away frem
the light source. The entire shadow volume is clipped against
the view volume to yield a finite volume. Any part of a
polygon within another polygon's shadow volume is
shadowed. Whether a visible point on a scene polygon is in
shadow can be determined by computing the relative number
of shadow polygons between it and the eyepoint that are front-
facing or back-facing. A number of shadow aigorithms have
been developed that create shadow volumes as a preprocessing
step before rendering with a scan-line or z-buffer visible-
surface algorithm [15, 5, 16, 3, 14, 9].

The technique described here combines elements of both these
approaches, with some important differences [6]. In the two-
pass object-space approach, the scene must be wholly within
the light source's view volume and must be transformed by the
light source's perspective transformation. While the algorithm
described here does clip scene polygons into shadowed and fit
parts, it does not require that polygons be transformed in the
shadow generation process. The basis of the Atherton, Weiler,
and Greenberg algorithm--the Weiler-Atherton polygon
clipper [22] (or its more robust descendant [23])--contains a
number of implementation subtleties. In contrast, our algorithm
uses a simpler clipping algorithm that always clips a polygon
against a plane, rather than against another polygon. The new
algorithm's second (visible-surface) pass may be conveniently
accomplished in image-space. Alternatively, the algorithm
may also be used to perform object-space visible-surface
determination by placing the light source at the eyepoint and
returning the list of the non-overlapping lit (visible) polygon
fragments that are computed.

Although the new algorithm generates a shadow volume, the
volume does not have to be closed (e.g., by clipping it agaiast
the view volume) and does not include the actual scene
polygons. Shadow-volume algorithms typically use the
shadow volume to compute shadows in the course of
performing visible-surface determination. The algorithm
described here clips the scene polygons against the shadow
volume in object space in the spirit of [16], creating the
shadow volume as it proceeds.

Our algorithm benefits from the divide-and-conquer power of
the Binary Space Partitioning (BSP) tree [10, 11] and its
generalization to modeling polyhedra [20]. It is relatively
simple and straightforward to implement and efficient enough

to provide interactive performance. In order to understand
how the algorithm works it is necessary to review some BSP
fundamentals.

3 BSP Fundamentals

The BSP visible-surface algorithm, developed by Fuchs,
Kedem, and Naylor, provides an extremely elegant and simple
way to determine visibility priority among polygons in a scene
independent of the eyepoint [10, 11]. A BSPIree represents a
recursive partitioning of n-dimensional space, inspired by the
early work of Schumacker [18, 19]. In 3D, the BSP tree's root
is a polygon selected from those in the scene. The root
polygon is used to partition object space into two half-spaces.
One half-space contains all remaining polygons in front of the
root polygon, relative to its plane equation, and the other
contains all polygons behind it. Any polygon that lies on both
sides of the root polygon's plane is split by the plane and its
front and back pieces are assigned to the appropriate half-
space. One polygon each from the root polygon's front and
back half-space become its front and back children. Each child
is recursively used to divide the remaining polygons in its
half-space in the same fashion. The tree is complete when each
leaf node contains only a single polygon whose two half-
spaces are empty, A modified inorder traversal of this tree
provides for O(n) back-to-front ordering from an arbitrary
viewpoint.

Thibault and Naylor [20] introduced the concept of using a
BSP tree to represent polyhedral solids. They associate an
" i n " or "out" value with each empty region at the leaves.
Assuming that a polyhedron's normals point outward, then an
" i n " region con-esponds to the half-space on a polygon's back
side, and an "out" region corresponds to the half-space on a
polygon's front side. Each internal node defines a plane and
has a list of polygons embedded in the plane. The " i n " and
"out" regions form a convex polyhedral tessellation of space.
Thus, a BSP tree can represent an arbitrary (possibly concave)
solid with holes as a union of convex " i n " regions. Thibault
and Naylor show how to produee a BSP tree from a polygonal
boundary representation of a solid and how to perform Boolean
set operations on two boundary representations or on a BSP
tree and a boundary representation to yield a new BSP tree.

4 The SVBSP Algorithm

The Shadow Volume BSP (SVBSP) tree is a modified version
of the BSP tree used by Thibault and Naylor. Each internal
node is associated with a "shadow plane" defined by a point
light source and an edge of a polygon facing the light source.
(If a directional light is used, then the shadow plane is defined
by the light source's direction vector and the polygon edge.)
This is one of the "shadow polygons" that Crow refers to as
bounding the shadow volume [8]. The direction of the plane's
normal is used to determine the half-space in which an object
is located. At the leaves are the " i n " and "out" cells
indicating whether or not a region is interior to the shadow
volume.

There axe two basic steps to the Shadow Volume BSP
algorithm whose execution is interleaved for each polygon
facing the light source:

100

~ Computer Graphics, Volume 23, Number 3, July 1989

• Determining shadows. The polygon is filtered down the
SVBSP tree to determine those parts that are shadowed
and those that are lit.

• Enlarging the SVBSP tree. The shadow volume for each
of the polygon's lit parts is created and added to the
SVBSP tree.

The most straightforward approach to checking whether a
polygon is in shadow would be to compare it with the shadow
volumes of all other polygons. Polygons that are further from
the light source than the polygon being tested cannot, however,
cast a shadow on it. Therefore, if we process the polygons in
front-to-back order relative to the light source, then each
polygon would only have to be compared with the shadow
volumes of those polygons that have already been processed
and which are closer to the light source than it. The front-to-
back ordering can be determined by building a regular BSP
tree from the original scene polygons and traversing it from the
point of view of the light source. Note, that this BSP tree
needs to be created only once at the outset. It must be
recomputed only if the scene's polygons change, not if a light
source is moved.

Rather than check i f a polygon is in each of the individual
shadow volumes of all polygons in front of it, it is more
efficient to keep one current merged shadow volume that is
enlarged by unioning it with the shadow volume of each new
polygon as the polygons are processed in front-to-back order.
Since a polygon is compared only with polygons that are closer
to the light than it, there is no need to check it against those
planes of the merged shadow volume that would have been
defined by these closer polygons. Therefore, these planes may
be left out. (If complete shadow volumes are needed for
subsequent computation, however, the scene polygon planes
must be included.) The resulting merged shadow volume is a
set of semi-infinite pyramids radiating outward from a single
apex at the point light source. Figure 1 (a) shows a merged
SVBSP shadow volume in 2D for a set of lines seen from a
point, while Figure 1 (b) shows the shadow volume with the
lines (planes in 3D) actually included. While Nishita et al. [16]
compare the shadow volumes of two convex polyhedra, BSP
trees make it relatively easy to compare the shadow volume of
one polygon with a typically concave union of shadow
volumes. The union operation is a version of the Boolean set
union for polyhedra described in [20].

The determination of which areas of a polygon are in shadow
is performed by filtering the polygon down the SVBSP tree,

(a) (b)

Figure 1 SVBSP volume in 2D.

Light

Initial state: out Add ab: a

b A o u t

in out

Add cd: a Add ef: a
/N / N

b out b out

in c in c

A /"--..
d out d g

in out in out f out

in out

F igure 2 Building an SVBSP volume in 2D.

splitting it whenever it lies in both half-spaces of a node's
plane. Fragments that reach the " i n " leaves are in shadow,
while fragments that reach the " o u t " leaves are lit. Since the
SVBSP tree is built incrementally, each polygon is compared
only with that part of the tree in existence when it is processed.
Note that it is not necessary to filter any polygon that doesn' t
face the light source, since it is already entirely in shadow.
Such polygons include any polygon whose plane embeds the
light source.

The SVBSP tree must be augmented m include each lit
fragment 's shadow volume. This is accomplished by creating
a set of shadow planes for the fragment 's edges and
constructing an SVBSP tree for them, using the algorithm for
building BSP trees presented in [20]. An SVBSP tree node
consists of the shadow plane alone, since the shadow plane
edge is no longer needed. Figure 2 shows the steps in the
construction of an SVBSP tree in 2D. Initially, the tree
contains a single " o u t " cell. Lines ab and cd (which would be
polygons in 3D) are both filtered down the SVBSP tree without
any splitting. When line e f i s filtered down the tree, it is split
into eg and g f b y the shadow plane through b. Line eg is
wholly inside an " i n " cell (the left branch o f b in Figure 2);

I01

S'GGRAPH '89, Boston, 31 July-4 August, 1989

therefore its shadow planes are not inserted. Since each
fragment that reaches an " o u t " cell is lit, it casts a shadow that
might fall on fragments added later. Therefore, shadow planes
for each edge of a lit polygon fragment are computed and the
volume that they define is added to the SVBSP tree, replacing
the ' ' ou t " cell in which the fragment landed.

Figure 3 shows pseudocode for shadowGenera to r , the top-
level shadow generation loop for the scene polygons. Each
scene polygon is processed by the recursive procedure
d e l e r m i n e S h a d o w (Figure 4), which filters the polygon down
the SVBSP tree, splits it when necessary, and augments the
SVBSP tree with the shadow volumes of lit fragments. The
pseudocode shown here assumes convex polygons and a single
light source.

5 Mult iple Light Sources

The SVBSP algorithm described above can be easily modified
to generate shadows cast by multiple light sources. This can
be accomplished by building a separate SVBSP tree for each
light source. All processing for one light source is performed
before considering the next. Therefore, only one SVBSP tr~e
need be kept in memory at any time. Polygons are processed
in front-to-back order with respect to the current light source.
Each polygon fragment must keep track of the light sources by
which it is lit. I f a fragment falls into an SVBSP tree " o u t "
cell, it is marked as lit. If it falls into an " i n " cell, it is marked
as shadowed. In both cases, the polygon fragment is attached to
the regular BSP tree node of the unfragmented polygon with
which it is associated. After all the polygons have been

; determineShadow filters p down SVBSPtree to
; determine shadowed fragments and reattaches shadowed
; fragments to BSPnode.

procedure determineShadow (p, SVBSPnode, PLS, BSPnode)
returns SVBSPnode

ill (SVBSPnode is an IN cell)
attach p to BSPnode as a shadowed fragment

else it (SVBSPnode is an OUT cell)
attach p to BSPnode as a lit fragment

; create shadow volume for p and
; append it to the SVBSP free

shadowPlanes := planes that form the shadow
volume of p with PLS

SVBSPnode :=
buildSVBSPtree (SVBSPnode, shadowPlanes)

else
; Split p by SVBSPnode.plane, creating
; negPart and posPart.

splitPolygon (p, SVBSPnode.plane, negPart, posPart)

if (negPart is not null)
SVBSPnode.negNode :=

determineShadow (negPart,
SVBSPnode.negNode, PLS, BSPnode)

if (posPart is not null)
SVBSPnode.posNode :=

determineShadow (posPad,
SVBSPnode.posNode, PLS, BSPnode)

endif
endproc

Figure 4 P s e u d o c o d e for de te rm ineShadow.

; shadowGenerator determines shadow fragments that
; are attached to the appropriate node in the BSP
; tree for subsequent rendering. Alternatively,
; fragments could be written to a file.

procedure shadowGenerator (PLS, BSPtree)

; Initialize the SVBSP tree to an OUT cell

SVBSPtree := OUT

; Process all polygons facing light source PLS in
; front-to-back order by BSP tree traversal in O(n).

for each scene polygon p, in front-to-back order
relative to PLS

if p is facing PLS

; Determine areas of p that are shadowed.
; BSPnode is p's node in BSPtree

SVBSPtree := deterrnineShadow (p, SVBSPtree,
PLS, BSPnode)

else
; p is not facing PLS or PLS is in p's plane

mark p as shadowed
endif

endfor

discard SVBSPtree
endproc

Figure 3 P s e u d o c o d e for shadowGenera to r .

processed in front-to-back order with respect to the current
light source, the current SVBSP tree can be discarded and a
new one initialized. The polygon fragments created by
filtering the scene through the previous SVBSP tree are filtered
through the next SVBSP tree in front-to-back order relative to
the new light source. Note that the front-to-back order is
established by traversing the original BSP tree, which has not
gained any nodes due to SVBSP polygon fragmentation.

Shading calculations can be done after the entire scene has
been processed for each light source, since each polygon
fragment that has passed through the last light source's SVBSP
tree is now associated with information indicating which light
sources illuminate it. This is ideal for graphics systems that
offer hardware shading support for multiple light sources.
Alternatively, shading calculations could be performed
incrementally as each light source's visibility from a fragment
is determined.

6 Discussion

It is highly desirable to keep an SVBSP tree well-balanced,
even at the expense of increased size, as is the case when using
BSP trees to model polyhedra. This would help in unioning
and filtering since each polygon must be filtered down to the
tree's leaves. Controlling tree size is also important, however.
One major way to accomplish this is to consider only the
silhouette edges of the objects of which the polygons are
par t - -a standard shadow algorithm optimization. As well, the
edges created by splitting a polygon as it is filtered down the

102

@ ~ Computer Graphics, Volume 23, Number 3, July 1989
i

original BSP tree need not be counted, Another way to reduce
the size of the tree is to create shadow planes only for polygons
that the user marks as being able to cast shadows.

In the special case of one light source, the shadowed fragments
may be kept and the lit fragments thrown away, rather than
keeping both. In this case, a polygon would be rendered by
drawing its shadowed fragments on top of the original
unfragmented polygon, as in [2]. There are some cases in
which shadows may be known to fall only within a specified
region, for example when a light source is defined with cones
or flaps [21]. In these cases, the scene can first be clipped to a
view volume containing only the region of interest for further
processing. This could also be accomplished using a BSP tree.

The fragments produced by filtering down one light's SVBSP
tree are pipelined to the next SVBSP tree. Therefore, in
processing multiple point light sources, it better to proceed in
the order that results in the least amount of polygon
fragmentation. One heuristic is to process the light sources in
increasing order of the number of polygons facing them.
Alternatively, the light sources can be processed in increasing
order of the likelihood with which their position will change.
If copies of the intermediate fragments produced by each
SVBSP tree for each polygon are maintained, then a change in
the position of the t~ light source will only require sending the
fragments from the i-1 th SVBSP tree through the remaining
trees. Therefore, those light sources whose position will
change most often can be computed last.

Although a light source's SVBSP tree may be augmented with
the shadow volumes of the lit polygon fragments that reach its
leaves, these lit portions have already been fragmented by
previous SVBSP trees. A smaller tree will result if the SVBSP
tree is instead augmented by shadow volumes created from the
more coherent lit fragments that result from filtering the
original scene polygon down the current SVBSP tree alone.
These more coherent fragments cannot be used for multiple
light source rendering since they only record the effect of the
current light source. They may, however, be used to render the
effects of that light source by itself.

As Thibault and Naylor point out, fragmentation could also be
reduced if edges were merged when it has been determined
that adjacent fragments are both in " i n " or " o u t " regions. As
a special case, if all fragments of the polygon are lit or all are
shadowed, then the fragments may be discarded and a copy of
the original polygon used, marked accordingly.

7 Implementation

This algorithm has been implemented in C on a HP 9000 350
TurboSRX graphics workstation under HP-UX using the
Starbase Graphics Library. To simplify the implementation
only convex polygons are handled and polygons are processed
individually, so no advantage is taken of the connectivity of
polygons in polyhedra to identify silhouette edges. As well, no
distinction is made between the original edges of a polygon
and those generated by splitting it during creation of the
original BSP tree or the SVBSP trees. A bit mask is used to
keep track of which light sources illuminate each polygon
fragment. Our implementation is able to take advantage of the
hardware shading capabilities provided by the graphics system

when rendering the figures. Since the original scene is already
represented as a BSP tree, the scene may be rendered with
either the BSP visible-surface algorithm (as done in the figures
included here) or the hardware z-buffer. Timings for the
figures are presented in Table 1 and include only the time
needed to generate polygon shadows. Rendering time was an
additional fraction of a second.

Figures 5-8 show a scene illuminated by three light sources,
shown individually and together. Two versions of the scene
are shown in each figure. The first version is shaded using the
light sources. The second, fragmented version shows how the
scene polygons are split by both the scene BSP tree and the
light source SVBSP trees: shadowed fragments are shown in
three levels of g e y , depending on the number of light sources
that illuminate them, while colored fragments are lit by all
light sources. Figure 9 shows another scene with only the
shadowed fragments outlined. Figures 10 and 11 show
additional scenes rendered with the algorithm.

It is important to note that care must be taken to avoid
problems posed by limited floating point precision. For
example, as polygon fragments get progressively smaller due
to fragmentation, the plane equation that would be calculated
for each will also get progressively more inaccurate. We
currently compute a plane equation for each original scene
polygon and assign it to each polygon fragment generated from
it. This not only saves computation, but assures that all
fragments of the original polygon remain coplanar with each
other. A similar approach can preserve the collinearity of
edges that are formed by splitting an original scene edge.

8 Conclusions and Future Work

The algorithm that we have presented generates shadows in
object space in near real-time for a modest number of
polygons. It is simple to implement, and because it generates a
set of polygons as output, it may be used as a preprocess to any
polygon-based visible-surface algorithm. Since the input and
output formats are the same, a pipelined approach for modeling
shadows from multiple light sources is easy to implement. No
restrictions are placed on the locations of the point light
sources and viewer, no transformations are required before
visible-surface determination. Our implementation relies o n

the use of a BSP tree representation of the scene to determine a
front-to-back ordering of the scene polygons for each light
source in time linear in the number of scene polygons. The
algorithm may be easily modified to support a full shadow
volume that includes the scene polygons, in which case the
scene BSP tree is not necessary. We have recently learned that
Naylor (personal communication, 1989) has independently
proposed a similar algorithm.

BSP trees not only present a unified framework for visible-
surface determination, point classification, and set operations
on polyhedra, but, as we have shown, also make possible
interactive shadow generation on modem graphics
workstations. In addition to pursuing some of the performance
improvements mentioned previously, we are also investigating
a natural extension to the SVBSP algorithm to support object-
space shadow generation for linear and area light sources [6].

103

:L~,~~SIGGRAPH '89, Boston, 31 July-4 August, 1989

Figure Secs Lights Input Front-facing Front-facing S V B S P Fragments
polygons polygons edges nodes

5 .62 1 27 12 49 144 122
6 .68 1 27 15 61 140 108
7 .23 I 27 15 61 31 49
8 5.33 3 27 12,15,15 49,61,61 144,140,32 475
9 1.96 1 126 61 227 88 537

I0 4.97 2 65 33,32 132,128 210,169 523
I1 7.99 2 106 49,53 196,212 415,191 813

Tetra256 4.15 1 258 130 390 577 723
Tctra1024 25.44 1 1026 514 1542 2894 3345

Table 1 Timings for figures. Figures Tetra256 and Tetra1024 (not shown) are recursive tetrahedra [13] with 256
and 1024 polygons, respectively, casting shadows on themselves and a ground plane.

Acknowledgements

This work is supported in part by the Defense Advanced
Research Projects Agency under Contract N00039-84-C-0165,
an equipment grant from the Hewlett-Packard Company AI
University Grants Program, and the New York State Center for
Advanced Technology under Contract NYSSTF-CAT(88)-5.
The recursive tetrahedron in Figure 9 was generated using Eric
Haines's Standard Procedural Database [13].

References

1. Appel, A. "Some Techniques for Shading Machine
Renderings of Solids." AFIPS SJCC 68, 32, 1968, 37-45.

2. Atherton, P., Weiler, K., and Greenberg, D. "Polygon
Shadow Generation." Proc. SIGGRAPH '78. In
Computer Graphics, 12:3, July 1978, 275-281.

3. Bergeron, P. "A General Version of Crow's Shadow
Volumes." IEEE CG&A, 6:9, September 1986, 17-28.

4. Blinn, J. "Jim Blinn's Comer: Me and My (Fake)
Shadow." 1EEE CG&A, 8:1, January 1988, 82-86.

5. Brotman, L.S., and Badler, N. "Generating Soft Shadows
with a Depth Buffer Algorithm." IEEE CG&A, 4:10,
October 1984, 5-12.

6. Chin, N. "Shadow Generation Using BSP Trees." M.S.
Thesis, Dept. of Computer Science, Columbia University
New York (forthcoming), 1989.

7. Cohen, M. and Greenberg, D. "The Hemi-Cube: A
Radiosity Solution for Complex Environments." Proc.
SIGGRAPH '85. In Computer Graphics, 19:3, July 1985,
31-40.

8. Crow, F. "Shadow Algorithms for Computer Graphics."
Proc. SIGGRAPH ' 77. In Computer Graphics, 11:3, July
1977, 242-248.

9. Foumier, A. and Fussell, D. "On the Power of the Frame
Buffer." ACM Trans. on Graphics, 7:2, April 1988, 103-
128.

10. Fuchs, H., Kedem, A., and Naylor, B. "On Visible
Surface Generation by A Priori Tree Structures." Prrc.
SIGGRAPH "80. In Computer Graphics, 14:3, July 1980,
124-133.

11. Fuchs, H., Abram, G., and Grant, E. "Near Real-Time
Shaded Display of Rigid Objects." Proc. SIGGRAPH '83.
In Computer Graphics, 17:3, July 1983, 65-72.

12. Fuchs, H., Goldfeather, J., Hultquist, J., Spach, S., Austin,
J., Brooks, Jr., F., Eyles, J., and Poulton, J. "Fast

Spheres, Shadows, Textures, Transparencies, and Image
Enhancements in Pixel-Planes." Proc. SIGGRAPH '85.
In Computer Graphics, 19:3, July 1985, 111-120.

13. Haines, E. "A Proposal for Standard Graphics
Environments." IEEE CG&A, 7:11, November 1987, 3-
5.

14. Max, N. "Atmospheric Illumination and Shadows."
Proc. SIGGRAPH "86. In Computer Graphics, 20:4,
August 1986, 117-124.

15. Nishita, T. and Nakamae, E. "Half-Tone Representation
of 3-D Objects Illuminated by Area Sources or
Polyhedron Sources." IEEE COMPSAC, November
1983, 237-242.

16. Nishita, T., Okamura, I., Nakamae, E., "Shading Models
for Point and Linear Light Sources." ACM Trans. on
Graphics, 4:2, April 1985, 124-146.

17. Nishita, T. and Nakamae, E. "Continuous Tone
Representation of Three-Dimensional Objects Taking
Account of Shadows and Interreflection." Proc.
SIGGRAPH '85. In Computer Graphics, 19:3, July 1985,
23-30.

18. Schumacker, R., Brand, B., Gilliland, M., and Sharp, W.
"Study for Applying Computer-Generated Images to
Visual Simulation." AFHRL-TR-69-14, USAF Human
Resources laboratory, September 1969.

19. Sutherland, I., Sproull, R., and Schumacker, R. "A
Characterization of Ten Hidden-Surface Algorithms."
ACM Comp. Surv., 6:1, March 1974, 1-55.

20. Thibault, W. and Naylor, B. "Set Operations on
Polyhedra Using Binary Space Partitioning Trees." Proc.
SIGGRAPH '87. In Computer Graphics, 21:4, July 1987,
153-162.

21. Warn, D. "Lighting Controls for Synthetic Images."
Proc. SIGGRAPH '83. In Computer Graphics, 17:3, July
1983, 13-21.

22. Weiler, K. and Atherton, P. "Hidden Surface Removal
Using Polygon Area Sorting." Proc. SIGGRAPH '77. In
Computer Graphics, 11:2, July 1977, 214-222.

23. Weiler, K. "Polygon Comparison using a Graph
Representation." Proc. SIGGRAPH '80. In Computer
Graphics, 14:3, July 1980, 10-18.

24. Whitted, T. "An Improved Illumination Model for
Shaded Display." CACM, 23:6, June 1980, 343-349.

25. Williams, L. "Casting Curved Shadows on Curved
Surfaces." Proc. S1GGRAPH "78. In Computer
Graphics, 12:3, August 1978, 270-274.

104

~ Computer Graphics, Volume 23, Number 3, July 1989

Figure 5 Solids with light source 1.

F igure 6 Solids with light source 2.

F igure 7 Solids with light source 3.

105

~~S,GGRAPH '89, Boston, 31 July-4 August, 1989

Figure 8 Solids with all three light sources.

F igure 9 Recursive tetrahedron and staircase with
one light source, showing shadow fi'agments.

F igure 10 Table and chair with two light sources.

F igure 11 Room with two light sources.

106

