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Scalable rendering of virtual environments requires culling
objects that have no etTect on the view. This paper ex-
plores culling moving objects by not solving the equations
of motion of objects that don’t tiect the view. While this
approach could be scalable for many kinds of environments,
it raises two problems: consistency - ensuring that objects
that come back into view do so in the right state - and com-
pleteness - ensuring that objects that would have entered
the view volume as a result of their motions, do so.

Solutions to these problems lie in studying the statistics
of the motion of objects. We show strategies for address-
ing the problem of consistency, with a number of examples
that illustrate both the difficulties involved in, and the po-
tential gains to be obtained by, formulating a comprehensive
approach.

CR Descriptors: 1.3.7 [Computer Graphics]: Three-
Dimensional Graphi@ and Realism - Virtual reality 1.6.5
[Simulation and Modeling]: Model Development - Mod-
eling methodologies 1.6.8 [Simulation and Modeling]:
Types of Simulation - Animation

1 Introduction
Dynamic systems are an important component of virtual en-
vironments. However, traditional dynamic systems require
constant computation to keep their state up to date. As vir-
tual worlds become larger in size, we expect the number of
systems with visible impact to grow at a slower pace, and
less of the total dynamic state to be relevant for rendering
a given view. To achieve maximum scalability, the cost of
computing dynamics should depend only on what is relevant
to the view, not on the total size of the world.

Level of detail [8] and visibility culling [2, 7] achieve scal-
abilityy for static worlds by rendering only what is relevant.
While Hodgins and Carlson[5] reduce the cost of dynamic
simulation by using level of detad for hopping robots play-
ing a chase-and-capture game, their approach requires dis-
tinct, hand generated models for the robot dynamics. Setae
et. al. [9] present a range of models for trees moving in the
wind, each corresponding to a different quality and cost of
simulation, but there is no discussion of how dynamic state
is maintained when trees are culled. In this paper we exam-
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ine the implications of culling dynamic systems, and present
examples to demonstrate possible modeling techniques.

2 Culling Dynamics
Culling dynamics that have no visible impact offers to
achieve scalability in virtual worlds, but results in two sig-
nificant problems.

●

●

Consistency: if the view turns away from a system
of moving objects whose dynamics are then culled, in
what state should those objects be when the view turns
back? In particular, in an ideal system, an observer
should not be able to obtain contradictions by looking
away from an object, and then back at it.

Comdeteness: obiects that are out of the view vol-
ume often travel int~ it of their own accord - for exam-
ple, consider a view into a room full of balls bouncing
off walls. If the dynamics of a ball are culled as soon
as it leaves the view volume, a fixed view could contain
a steaddy decreasing number of balls. While this could
be perfectly consistent with evidence available to the
viewer (there could be something out of view catching
the balls), it is a poor model. Avoiding this difficulty
requires some way of telling where an object might be,
without necessarily solving its equations of motion.

A natural approach to the consistency problem involves tag-
ging an object with the time it was last seen and its state at
that time when it leaves the view volume, and then advanc-
ing its state (by solving the equations of motion with as large
a time-step as possible) when the view volume moves back
over the object. This is a poor solution for two reasone: it
leads to sharp collapses in the frame rate as the view sweeps
over a complex object which has been out of view for a while,
aud it offers no leverage on the completeness problem.

In our view, a better approach involves a study of the
qualitative properties of dynamic systems. A viewer will
detect an inconsistency if their qualitative prediction of eye-
tem behavior is violated, so it is at thk level that dynamic
state must be consistent. Underlying our methods should
be a model of human perception of dynamics that indicates
which properties must be maintained, allowing us to avoid
computing expensive, irrelevant properties.

A key property in designing a model for culling is the sen-
sitivity of the system to initial conditions. A viewer has a
snapshot of the approximate initial conditions when a sys-
tem leaves the view, and it is the predictions they may make
based on those conditions that determines how a new state
is generated when the system re-enters the view. We char-
acterize the intluence of initial conditions in three ways, and
associate diEerent strategies with each.

● Strong influence allows accurate predictions to be
made, leaving no choice but to integrate the system
as if it were in view. However, this may introduce lag.
As a paztial solution to this problem we attempt to
buHer state ahead of time, aiming to have state ready
when the system re-enters the view. This does not save
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●

work, but does spread the lag time over many preceding
frames.
Medium influence allows a viewer to make some qual-
itative predictions. There appears to be no completely
general modeling strategy for this case. Instead we ex-
pect to find a set of techniques, each of which works for
a class of dynamics, and apply those which best match
the properties of a given system. One applicable tech-
nique is classical perturbation theory, as described in
[1], which models how systems behave over time when
subjected to small perturbations in control.
Weak influence makes it difficult for a viewer to make
any prediction about state baaed on their knowledge
of initial conditions. However, predictions can still be
made baaed on knowledge of the general behavior of
the system - for example, energy or angular momentum
might be conserved. To generate a new state in this
scenario we encode the general behavior of the system
using statistical or other means, then choose a new state
consistent with our model.

We refer to this intluence of initial conditions as conditioning.
A key parameter in defining culling strategies is the time
that must elapse before strong conditioning is replaced by
medium and then weak. In the following sections we discuss
some possible approaches to determining these time intervals
such that the important qualitative measures of a system
remain consistent.

We have implemented a virtual fun park environment in
which to experiment with these ideaa. The core system loops
testing visibility and then updating the dynamics and ren-
dering the geometry for visible objects only. The dynamic
models are all designed such that they may be called at ar-
bitrary time intervals as they move into and out of view.
Here we examine two systems designed for use within this
environment – the Tilt-A-Whirl and a bumper car ride.

3 The Tilt-A-Whirl
The Tilt-A-Whirl is an amusement park ride in which pas-
sengers sit in one of seven cars that are driven in unison
around a holly circular track. Each car is free to rotate about
the center of a circular platform which tilts such that it re-
mains tangential to the surface aa it moves around the track.
The key parameters of this system are the angular position
of the platform on the track, 0, the angular position of the
car on the platform, # and the time derivatives of those vari-
ables, 8 and & The dynamics of the system moves through
5 phases:

. Start, where the platforms accelerate;

. Run, the steady state phase of the motion, with 8 tixed;
● Stop, during which the platforms slow down and stop;
● Decay, for which the platforms are stationary, but the

cars are still in motion on their platforms;
● Stationary, where everything is static for some period.

The system loops through the phases in sequence driven by
a state machine which changes state based on the time spent
in each phase. We discuss the run and decay phases in detail,
as they indicate underlying principles for designing systems
with culling in mind. We then discuss how culling interacts
with the state machine.

3.1 The Run State
In the run state, a Tilt-a-Whirl is unpredictable; culling sys-
tems like this requires a model of the general dynamic be-
havior from which we can generate new states. Frequently,
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Figure 1: A trace of the difference in # for two cars started
with similar initial wnditions. The value of the difference is
noise-like after a small number of cycles, meaning that the
relationship between the 2 cars becomes dificult to predict
after only a few cycles. In turn, this means the system’s
dynamics can be culled quite easily, because a viewer is un-
likely to be able to make sufficiently accurate predictions to
notice an error, if invariant properties of the motion can be
preserved.

systems of thk form possess one or more attractors, to which
the state of the system will move regardless of initial condi-
tions. A an attractor in state space offers a useful model of
the general behavior of the system – regardless of how the
system has evolved, it will lie on an attractor.

The run phase of the Tilt-A-Whirl, when ~ = 6.5rpm,
exhibits chaotic steady state dynamics, which are described
in detail in [6]. Figure 1 compares the motion of 2 cars
that begin with similar initial condkions corresponding to
a difference of 10° and 10° /s for # and & The sequence
indicates that after the cars have passed over 3 hills (which
takes around 9s of virtuaf time), there is a wide variation in
which car follows which, and by how much.

The Tilt-a-Whirl’s attractor is an invariant property of
the motion – any Tilt-a-Whirl that has been running for
suilicient time has a state that lies on this set of states.
Consider the probability that a Tilt-a-Whirl is close to state
x at time t, given that it was observed to be close to some
other state X. at time to;because the Tdt-a-Whirl haa an
attractor, this probability is very low off the attractor, and
because its behaviour is hard to predict, this value must be
largely independent of X. and to.As a result, we can model
the Tilt-a-Whirl as a probability density on the attractor;
when a car has been out of view and in the run state for
some time, a sample from this density is a consistent model
of the object’s state.

3.2 The Decay State
In the decay phase, each car behaves like a damped pen-
dulum. A good qualitative parameter to measure for the
system is the total energy. The energy decays rapidly in
a predictable way, and viewers can estimate it by noting
the amplitude of the motion. In addition, below a key en-
ergy threshold the non-linear equation of motion may be lin-
earized, to yield an explicit expression of state as a function
of time.

Given an initial energy, we obtain an approximation to
the time taken to reach the linearized region, at which point
we can change from the non-linear to linear models. If the
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system has been out of view for longer than this time, we
can jump directly to the linear model and avoid the work of
integrating through the non-linear phase.

3.3 Managing States
When a Tilt-A-Whirl system re-enters the view, we must
fist determine which phase the machine is in, and then de-
termine a state for this system consistent with the last time
the machine was seen. If the machine has not changed phase,
we may use the methods above for the run or decay phase,
or integrate forward for the other phases. If the system has
changed phase, we step through the state machine to find
the new phase, and then generate a new state across phases.

The stationary phase has the property that there is only
one possible state for the system in this phase. Hence, we
know the state of the system at least as recently as the
last stationary phase. In addition, if the system has been
through more than 9s of virtual time in the run phase, we
can sample a state for the most recent moment in run with
the knowledge that consistency is not violated. Finally, if
the system has been in the decay phase for long enough to
allow the equations to be linearized, we can generate a con-
sistent state for that period. The longest time we will need
to integrate over is the time to the most recent of the above
events, which is always less than 20s virtual time or 80ms
real time. The algorithm for generating a new state simply
identifies the most recent event, and integrates from that
point to the current time.

3.4 Results
We conducted a series of tests to compare the computational
cost of dynamics with culling enabled to that with no culling.
Three different types of viewer motion were examined corre-
sponding to a fixed view, a slow, smoothly moving view and
a view that moves rapidly and chaotically over the world.
Figure 2 shows the significant speedups achieved with dy-
namics culling. The greatest speedups are for a static view,
while the worst speedup is for fast moving views, which are
unlikely to be used by a real viewer. The low slope of the
culling curves indicates high scalability for the common case
of walkthrough type views.

4 Bumper Cars
A bumper car simulation consists of 12 cars moving on an
enclosed, flat platform. Each car is driven by a simple con-
troller that attempts to drive the car around the track, avoid-
ing the walls and other cars. Occasionally the controller
becomes angry and deviates from its normal behavior to de-
liberately hlt another car.

The controller for the car chooses a direction and speed in
which the car would like to travel. It does this by choosing
preferred parameters which take it in an elliptical circuit
around the track at maximum speed. It then calculates a
series of offsets to apply to these parameters in order to
avoid the walls and other cars. The modified parameters are
bounded to reflect the maximum acceleration of the car and
the maximum turn rate of the steering wheel.

The continuous part of the dynamics simulation simply in-
tegrates the standard rigid body equations for the car. The
steering wheel angle and drive mot or speed exert forces on
the system, and there are traction forces between the wheels
of the car and the surface on which it travels. The con-
troller is called at discrete intervals to provide a set of drive
parameters, which are asumed to be constant through the
next interval. The controller is deliberately bad at avoiding
collisions. Collisions are tested at discreet intervals, using
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Figure 2: Mean real time spent on dynamics per second
of virtual time, plotted against the number of moving Tilt-
A- Whirls for a variety of viewpoint movements, comparing
culled dynamics with unculled dynamics. For a static view
culling dynamics offers an order of magnitude speedup. For
the slow moving walkthrough view the speedup is approxi-
mately a factor of five. The mndom view attaches the view-
point to one of the Tilt-A- Whirl cars - which move quickly
and nearly mndomly - resulting in a speedup of about 1.5.
This view performs poorly because systems are not out of
view for long enough to allow the dependence on initial con-
ditions to become weak. The Tilt-A- Whirls were placed such
that the density of machines increased, not the size of the
world. Note that the time spent on dynamics without culling
varies because the integrator step length varies, which also
contributes to the variations in slope.

the OBBlhe interference detection package as described in
[3], and are treated as impulses [4].

The bumper car system is influenced by an initial state
for a long period of time. For time intervals where the de-
pendence on initial conditions is strong, we rely on buffering
methods. The buffer is filled during periods without colli-
sions, and empties as collisions occur.

The controller for each bumper car is such that it tries to
produce a particular motion (movement at constant speed
around an ellipse), but this constant motion is perturbed
by outside factors such as avoiding neighbors. The exact
spatial perturbations are not predictable by a viewer because
aspects of the controller such as collision response, avoidance
thresholds and random noise make perturbations sensitive
to uncertainty in initial conditions. However, a viewer can
detect the average effect of perturbations over time - the
irregularities in a car’s motion. This suggests that a good
strategy is to capture the distribution of the spatial effect of
the temporal mean of perturbations, sample a spatial effect
and apply it to the constant elliptic motion expressed as an
explicit function of time.

This model of perturbed motion on an ellipse suggests a
parameterization of the state space: (~, r, p, i, i, ~), where ~
defines the position of the car on an ellipse of major radius
r and eccentricity matching the aspect ratio of the track. p
encodes the orientation of the car with respect to the tangent
to the ellipse at the car’s location. The parameters u ‘~d
i are the velocity of the car in its local coordinate system.
The angular velocity of the car is encoded in ~. We build
distributions on the effect of perturbations in ~, r and p
independently.

Each car is sampled independently (the dependence be-
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tween cars is accounted for in the perturbations), which may
lead to cars in interference. A resampling strategy is not use-
ful here, because the collision may be very likely to occur.
Instead we reposition cars on the track such that the relative
position of the car’s centers is preserved if possible – only
their separation distance is changed. This assumes that all
collision avoidance or collisions proper result in a rebound
type motion.

A model baaed on the effect of perturbations over time
provides information for the long term behavior of the sys-
tem. Intuitively, the initial uncertainty in the position of
each car may be visualized as 12 small blobs in state space,
each blob representing the (uncertain) state of one CM. As
time passes, the blobs move through state space as the cars
move, but the uncertainty in the effect of perturbations
causes them to grow in size, because we are unable to pre-
dict exactly how they move. Eventually the blobs spread
out to cover all of state space, indicating that the cars may
be anywhere on the track. In the limit case we expect the
distribution of spread blobs after a long period of time to
reflect the general behavior of the system in terms of the
average position of cars on the track. The time at which we
are close to this limit is the time at which the influence of
initial conditions is sufficiently weak as to be ignored.

If sufficient time haa passed for the initial state to be irrel-
evant, we independently sample the state of each car from a
dktributions on (~, r, p, h, 0, ~). With this method it is pos-
sible to choose positions for cars that intersect either each
other or the walls. We place cars in order and test for inter-
section with those already placed. If interference is detected,
we reject and resample. This method produces distributions
on cars that are qualitatively indistinguishable from dynami-
cally evolved distributions.

4.1 Results
A series of tests was conducted to examine the performance
improvements that are achievable when culling bumper cars.
The experiments were identical to those for the Tilt-A-Whirl
with bumper cars used in place of Tilt-A-Whirls. Figure
3 shows the speedups achieved for the bumper car world.
The speedups achieved range from 5x to 1.5x, and the low
slopes on the culling curve indicate a strong improvement in
scalability.

5 Conclusion
The examples presented demonstrate techniques for ensur-
ing that the qualitatively important properties of a dynamic
system remain consistent across periods when the system is
culled. The essential steps are identifying those properties
that are important, and seeking the extent to which uncer-
tain knowledge of initial state influences the ability to predict
future state. While the examples are specific to particular
systems, the properties of these systems on which we rely
—weak influence of initial state, state baaed behavior, and
a controller producing perturbed constant motion – are all
properties common to many systems we wish to model.

While the models used here were hand generated, the ex-
istence of general solutions for commonly occurring systems
suggests that much of the work required may be automated,
possibly through the application of existing statistical meth-
ods for estimating the influence of initial condltions[lO] and
modeling distributions that appropriately reflect the behav-
ior of systems over time. The ideal analysis tool would take
a detailed, possibly annotated, dynamic model of the system
and provide a new model to support culling in a consistent
and high performance virtual environment.
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Figure 3: Menn real time spent on dynamics per second of
virtual time plotted against the number of bumper car sys-
tems, under a variety of viewpoint movements, wmparing
culled dynamics with unculled dynamics. Views are as per
figure 2. As the number of cars increases, the speedup ob-
tained by culling dynamics for a static view increases too,
because the number of objects that are never rendered in-
cwases. The speedup is smaller for the slowly moving view
because occasionally an object wines into view, and its state
must be advanced to produce data for the current frame; how-
ever, the speeriup again increases with the number of cars, be-
cause the number of invisible objects is still increasing. View-
points that move quickly, like the chaotic view, do not allow
much speedup, although the speedup grows with the number
of cars in this case, too; the speedup is better than the case of
the Tilt-A- Whirl because our state genemtion stmtegies are
more eficient for this case.
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