
LDI Tree: A Hierarchical Representation for Image-Based Rendering

Chun-Fa Chang Gary Bishop Anselmo Lastra
University of North Carolina at Chapel Hill

ABSTRACT
Using multiple reference images in 3D image warping has been a
challenging problem. Recently, the Layered Depth Image (LDI)
was proposed by Shade et al. to merge multiple reference images
under a single center of projection, while maintaining the simplic-
ity of warping a single reference image. However it does not
consider the issue of sampling rate.

We present the LDI tree, which combines a hierarchical space
partitioning scheme with the concept of the LDI. It preserves the
sampling rates of the reference images by adaptively selecting an
LDI in the LDI tree for each pixel. While rendering from the LDI
tree, we only have to traverse the LDI tree to the levels that are
comparable to the sampling rate of the output image. We also
present a progressive refinement feature and a “gap filling” algo-
rithm implemented by pre-filtering the LDI tree.

We show that the amount of memory required has the same
order of growth as the 2D reference images. This also bounds the
complexity of rendering time to be less than directly rendering
from all reference images.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration - Viewing Algorithms; I.3.6 [Computer Graphics] Meth-
odology and Techniques - Graphics data structures and data types;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism.

Additional Keywords: image-based rendering, hierarchical rep-
resentation

1. INTRODUCTION
The 3D Image warping algorithm [14] proposed by McMillan and
Bishop uses regular single-layered depth images (which are called
reference images) as the initial input. One of the major problems
of 3D image warping is the disocclusion artifacts which are
caused by the areas that are occluded in the original reference
image but visible in the current view. Those artifacts appear as
tears or gaps in the output image. In Mark’s Post-Rendering
Warping [11], the techniques of splatting and meshing are pro-
posed to deal with the disocclusion artifacts. Both splatting and
meshing are adequate for post-rendering warping in which the
current view does not deviate much from the view of the reference
image.

However, the fundamental problem of the disocclusion arti-

facts is that the information of the previously occluded area is
missing in the reference image. By using multiple reference im-
ages taken from different viewpoints, the disocclusion artifacts
can be reduced because an area that is not visible from one view
may be visible from another. When multiple source images are
available, we expect the disocclusion artifacts that occur while
warping one reference image to be eliminated by one of the other
reference images. However, combining multiple reference images
and eliminating the redundant information is a non-trivial prob-
lem, as pointed out by McMillan in his discussion of inverse
warping [15].

Recently, the Layered Depth Image (LDI) was proposed by
Shade et al. [19] to merge many reference images under a single
center of projection. It tackles the occlusion problems by keeping
multiple depth pixels per pixel location, while still maintaining the
simplicity of warping a single reference image. Its limitation is
that the fixed resolution of the LDI may not provide an adequate
sampling rate for every reference image. Figure 1 shows two
examples of such situations. Assuming the two reference images
have the same resolution as the LDI, the object covers more pixels
in reference image 1 than it does in the LDI. Therefore the LDI
has a lower sampling rate for the object than reference image 1.
Similar analysis shows the LDI has a higher sampling rate than
reference image 2. If we combine both reference images into the
LDI and render the object from the center of projection of refer-
ence image 1, the insufficient sampling rate of the LDI will cause
the object to look more blurry than it looks in reference image 1.
When we render the object from the center of projection of refer-
ence image 2, the excessive sampling rate of the LDI might not
hurt the quality of the output. However, processing more pixels
than necessary slows down the rendering.

In this paper, we present the LDI Tree, which combines a hi-
erarchical space partition scheme with the concept of the LDI. It
preserves the sampling rate of the reference images by adaptively
selecting an LDI in the LDI tree for each pixel. While rendering
from the LDI tree, we only have to traverse the LDI tree to the
levels that are comparable to the sampling rate of the output im-
age. Because each LDI also contains pre-filtered results from its
children LDIs, progressive refinement is easy to implement. The
pre-filtering also enables a new “gap filling” algorithm to fill the
disocclusion artifacts that cannot be resolved by any reference
image.

The amount of memory required has the same order of growth
as the 2D reference images. Therefore the LDI tree preserves an
important feature that image-based rendering has over traditional
polygon-based rendering: the cost is bounded by the complexity
of the reference images, not by the complexity of the scene.

2. RELATED WORK

2.1. Inverse Warping
The image warping described in [14] is a forward warping proc-
ess. The pixels of the reference images are traversed and warped
to the output image in the order they appear in the reference im-
ages. Some pixels in the output image may receive more than

CB#3175 Sitterson Hall, Chapel Hill, NC 27599-3175, USA.
{chang, gb, lastra}@cs.unc.edu http://www.cs.unc.edu/~ibr

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGGRAPH 99, Los Angeles, CA USA
Copyright ACM 1999 0-201-48560-5/99/08 . . . $5.00

291

one warped pixel and some may receive none, which causes arti-
facts.

In [15], McMillan proposed an inverse warping algorithm.
For each pixel in the output image, searches are performed in all
reference images to find the pixels that could be warped to the
specified location in the output image. Although epipolar geome-
try limits the search space to a one-dimensional line or curve in
each reference image and a quadtree-based optimization has been
proposed in [10], searching through all reference images is still
time consuming.

2.2. Layered Depth Image
Another way to deal with the disocclusion artifacts of image
warping is to use the Layered Depth Image (LDI)[19]. Given a
set of reference images, one can create an LDI by warping all
reference images to a carefully chosen camera setup (e.g. center of
projection and view frustum) which is usually close to the camera
of one of the reference images. When more than one pixel is
warped to the same pixel location of the LDI, some of them may
be occluded. Although the occluded pixels are not visible from
the viewpoint of the LDI, they are not discarded. Instead, separate
layers are created to store the occluded pixels. Those extra pixels
are likely to reduce the disocclusion artifacts. However the fixed
resolution of the LDI limits its use as discussed previously in
section 1.

Lischinski and Rappoport used three parallel-projection LDIs
to form a Layered Depth Cube [9]. Max’s hierarchical rendering
method [12] uses the Precomputed Multi-Layer Z-Buffers which
are similar to the LDIs. It generates the LDIs from polygons and
the hierarchy is built into the model.

2.3. Volumetric Methods
The LDI resembles volumetric representations. The main differ-
ences between an LDI-based representation and 3D volume data
are discussed in [9].

Curless and Levoy presented a volumetric method to extract
an isosurface from range images [3]. The goal of their work,
however, was to build high-detail models made of triangles. The
volume data used in that method is not hierarchical and it relies on
a run-length encoding for space efficiency.

There has also been work related to octree generation from
range images [1][2][8]. However the octree that is generated in
those methods is used to encode the space occupancy information.
Each octree cell represents either completely occupied or com-
pletely empty parts of the scene.

The multi-resolution volume representation in the Hierarchi-
cal Splatting work [6] by Laur and Hanrahan can be considered as
a special case of the LDI tree in which the LDIs are of 1×1 reso-
lution. It is however built from a fully expanded octree (which is
called a pyramid in their paper). The octree to be traversed during
the rendering is also predetermined and does not change with the
viewpoint.

2.4. Image Caching for Rendering
Polygonal Models

The image caching techniques of Shade et al. [18] and Schaufler
et al. [17] use a hierarchical structure similar to the LDI tree.
Each space partition has an imposter instead of an LDI. The im-
poster can be generated rapidly from the objects within the space
partition by using hardware acceleration. However, the imposter
has to be frequently regenerated whenever it is no longer suitable
for the new view.

In contrast, the information stored in the LDI tree is valid at
all times. By generating the LDI tree from the reference images
instead of the objects within the space partitions, the LDI tree can
be used for non-synthesized scenes as well.

3. LDI TREE
The LDI tree is an octree with an LDI attached to each octree cell
(node). The octree is chosen for its simplicity but can be replaced
by the other space partitioning schemes. Each octree cell also
contains a bounding box and pointers to its eight children cells.
The root of the octree contains the bounding box of the scene to
be rendered1. The following is pseudo code representing the data
structure:

LDI_tree_node =
Bounding_box[X..Z, Min..max]: array of

real;
Children[0..7]: array of pointer to

LDI_tree_node;
LDI: Layered_depth_image

All LDIs in the LDI tree have the same resolution, which can
be set arbitrarily. The height (or number of levels) of the LDI tree
will adapt to different choices of resolution. In general, a lower
resolution results in more levels in the LDI tree. Ultimately, we
can make the resolution of the LDI be 1×1 which makes the LDI
tree resemble the volume data in the Hierarchical Splatting [6].

Note that each LDI in the LDI tree contains only the samples
from objects within the bounding box of the cell. This is some-
times confusing because the LDI originally proposed by Shade et
al. combines the samples from all reference images.

For simplicity, we use one face of the bounding box as the
projection plane of the LDI. Orthographic projection is used and
the projection direction is perpendicular to the projection plane.

An example of the LDI tree is shown in Figure 7 by viewing
the bounding boxes from the top. The following sections discuss
the details of constructing the LDI tree from multiple reference
images and of rendering a new view from the LDI tree.

1 For outdoor scenes, background textures can be added to the
faces of the bounding box. The bounding box can be extended
with little overhead if most of the space is empty.

Figure 1: The LDI does not preserve the sampling rates of the reference images.

LDI objectRef.1Ref.2

292

3.1. Constructing the LDI Tree from
Multiple Reference Images

The LDI tree is constructed from reference images by warping
each pixel of the reference images to the LDI of an octree cell,
then filtering the affected LDI pixels to the LDIs of all ancestor
cells in the octree.

In 3D image warping, each pixel of the reference images
contains depth information which is either stored explicitly as a
depth value or implicitly as a disparity value. This allows us to
project the center of the pixel to a point in the space where the
scene described by the reference images resides.

We observed that the sampling rate or the "quality" of a pixel
of a reference image depends on its depth information. For exam-
ple, if (part of) a reference image represents a surface that is far
away, then those pixels that describe that surface do not provide
enough detail when the viewer zooms in or walks toward that
surface. Conversely, warping every pixel of a reference image
taken near an object is wasteful when the object is viewed from
far away.

We characterize the reference image by a pinhole camera
model using the notation adopted by McMillan [14][15]. Figure 2

illustrates the camera model. C& is the center of projection. Each
pixel of the reference image has coordinates (u, v) and the vectors

a
v

and b
v

are the bases. Each pixel also contains the color infor-
mation and a disparity value δ. When a pixel is projected to the
3D object space, we get a point representing the center of the
projected pixel and a “stamp size.” The center is computed as:

and the stamp size S is calculated by:

To simplify our discussion, we do not consider the orientation
of the object surface from which the pixel is taken. We also ig-
nore the slight variation of stamp size at the edges of the projec-
tion plane.

An octree cell is then selected to store this pixel. The center
location determines which branch of the octree to follow. The
stamp size determines which level (or what size) of the octree cell
should be used. The level is chosen such that the stamp size ap-
proximately matches the pixel size of the LDI in that cell.

After an octree cell has been chosen, the pixel can then be
warped to the LDI of that cell. The details of the warping are
described in [11]. Usually, the center of the pixel will not fall
exactly on the grid of the LDI, so resampling is necessary. This is

done by splatting [20] the pixel to the neighboring grid points. In
this paper we use a bilinear kernel. Four LDI pixels are updated
for each pixel of a reference image. More specifically, the alpha
values that result from the splatting are computed by:

)3(alpha

(3b)
,)1,(

),,(

(3a)
,)1,(

),,(

1),(

/

/

YX

YY
X

X

YY
X

Y

Y

XX
X

X

XX
X

X

X

YYY

XXX

WW

PS
P

S
YcYiKernel

PS
P

S
YcYiKernel

W

PS
P

S
XcXiKernel

PS
P

S
XcXiKernel

W

s

d
sdKernel

NBP

NBP

=

≤∗−

>−
=

≤∗−

>−
=

−=

=
=

where BX and BY are the sizes of the LDI projection plane (which
is a face of the bounding box). NX and NY are the resolutions of the
LDI. SX and SY are as defined in equation 2. (Xc, Yc) is the center
of splatting in the selected LDI and (Xi, Yi) is one of the grid
points covered by the splatting. The conditions in equations 3a
and 3b guarantee that the splat size will not be smaller than the
LDI grid size, which represents the maximal sampling rate of the
LDI.2

A pixel also contributes to the parent cell and all ancestor cells
of the octree cell that was initially chosen. This is done by splat-
ting the pixel to the LDIs of all the ancestor cells. The result is
that the LDI of a cell contains the samples within its descendants
filtered down to its resolution. Therefore, later in the rendering
stage, we need not traverse the children cells if the current cell
already provides enough detail.

We classify the pixels in the LDI tree into two categories: un-
filtered and filtered. The unfiltered pixels are those that come
from the splatting to the octree cell that was initially chosen for a
reference image pixel. Those pixels that come from the splatting
to the ancestor cells are classified as filtered, because they repre-
sent lower frequency components of the unfiltered pixels. Note
that an unfiltered pixel may be merged with a filtered pixel during
the construction of LDI tree. The merged pixel is considered as
filtered because better-sampled pixels are in the LDIs of some
children cells of the current octree cell.

The classification of unfiltered and filtered pixels is necessary
for rendering the output images (as described in section 3.2).
Imagine that a cell contains unfiltered pixels of a surface area that
is only visible from one of the reference images. When the cell
and its children cells are processed during the rendering, we must
warp its unfiltered pixels but not its filtered pixels that are filtered
from the children cells.

2 It is similar to how the subpixels are prefiltered in supersampling
for antialiasing.

δ

δ

/

/

)2(

bS

aS

SSS

Y

X

YX

v

r

=

=
×=

C&

a
v

b
v

c
v

Figure 2: The camera model.

(1)/)(δcbvauC
rrr& +++

293

An LDI pixel may get contributions from many pixels of the
same surface. They may be neighboring pixels in the same refer-
ence image, or pixels in different reference images that sample the
same surface. The contributions from those pixels must be
blended together. Figure 3a shows an example of those cases. An
LDI pixel can also get contributions from many pixels of different
surfaces. In those cases, we assign them to different layers of the
LDI pixel. Figure 3b shows an example of those cases. To de-
termine whether they are from the same surface or not, we check
the difference in their depth value against a threshold. We select
the threshold to be slightly smaller than the spacing between adja-
cent LDI pixels, so that the sampling rate of a surface that is per-
pendicular to the projection plane of the LDI can be preserved.

3.2. Rendering the Output Images
We render a new view of the scene by warping the LDIs in the
octree cells to the output image. The advantage of having a hierar-
chical model is that we need not render every LDI in the octree.
For those cells that are farther away, we can render them in less
detail by using the filtered samples that are stored in the LDIs
higher in the hierarchy.

To start the rendering, we traverse the octree from the top-
level cell (i.e. the root). At each cell, we first perform view frus-
tum culling, then check whether it can provide enough detail if its
LDI is warped to the output image. If the current cell does not
provide enough detail, then its children are traversed. An LDI is
considered to provide enough detail if the pixel stamp size covers
about one output pixel. Therefore the traversal of the LDI tree
during the rendering will adapt to the resolution of the output
image. Note that we do not calculate the pixel stamp size for each
individual pixel in an LDI. Because all the pixels in the LDI of an
octree cell represent samples of objects that are within its bound-
ing box (as shown in Figure 4), we can estimate the range of
stamp size for all pixels of the LDI by warping the LDI pixels that

correspond to the corners of the bounding box. The corners of the
bounding box are obtained by placing the maximal and minimal
possible depth at the four corner pixel locations of the LDI. We
use equation 2 to compute the stamp size with the vector a

v
and

b
v

of the output image and the disparity value δ obtained from the
warping. Note that a special case exists if the new viewpoint is
within the octree cell. When this happens we consider the cell as
not providing enough detail and the children are traversed.

The pseudo code for the octree traversal follows:

Render (Octree) {
1. If outside of view frustum,

then return;
2. Estimate the stamp size of the LDI

pixels;
3. If LDI stamp size is too large or the

viewer is inside the bounding box then {
4. Call Render() recursively for each

child;
5. Warp the unfiltered pixels in LDI to

the Output buffer; }
6. else {
7. Warp both unfiltered and filtered

pixels in LDI to the output buffer; }
}

Note the difference in step 5 and step 7 of the pseudo code.
As mentioned in section 3.1, each LDI in the octree contains both
unfiltered and filtered pixels. When we warp both the LDI in a
parent cell and the LDI in a child cell, the filtered pixels in the
parent cell should not contribute to the output because the unfil-
tered pixels in the child cell already provide better sampling for
the same part of the scene.

One feature of the original LDI is that it preserves the occlu-
sion compatible order in McMillan’s 3D warping algorithm
[13][14]. However this feature is compromised in the LDI tree.
Although the back-to-front order can still be obtained within an
LDI and across LDIs of sibling cells of the octree, we cannot ob-
tain such order between LDIs of a parent cell and a child cell.
This causes problems when unfiltered samples exist in both parent
and child cells. In addition, the warped pixels are semi-
transparent due to the splatting process. Therefore, we need to
keep a list of pixels for each pixel location in the output buffer.
We implement the output buffer as an LDI. At the end of the
rendering, each list is composited to a color for display. The de-
tails of the compositing are discussed next.

octree cell

LDI

output

Figure 4: To estimate the range of stamp size for all pixels
in the LDI, the corners of the bounding box are warped to
the output image.

(a) (b)

LDI
Ref.1

Ref.2

LDI
Ref.1

Ref.2

Figure 3: Illustrations of pixels that are warped to the same pixel location in an LDI. (a) Two pixels from reference image 1
and a pixel from reference image 2 are taken from the same region of a surface. Blending is used to combine their contribu-
tion to the LDI pixel. (b) One of the pixels from reference image 2 is taken from a different surface. A separate layer in the
LDI is created to accommodate its contribution to the same LDI pixel.

294

3.3. Compositing in the Output Buffer
Given a list of semi-transparent pixels, we sort the pixels in depth
and then use alpha blending starting from the front of the sorted
list. An exception is that two pixels with similar depth should be
merged first and their alpha values summed together before they
are alpha-blended with the other pixels. That is because they are
likely to represent sampling of the same surface.

Therefore, the pixel merging is also performed in the output
LDI, which is similar to the pixel merging in the LDI of the octree
cell as discussed in section 3.1. The difference is that a single
threshold value of depth difference does not work anymore be-
cause the pixels can come from different levels of the LDI tree.
This difficulty is solved by attaching the level of octree cell where
the pixel comes from to each pixel in the output LDI. The thresh-
old value that is used for that level of octree is then used to deter-
mine whether two pixels in the output LDI should be merged.

3.4. Progressive Refinement
As discussed in section 3.2, the traversal of the LDI tree during
the rendering depends on the resolution of the output image. The
simplest method to create the effect of progressive refinement is
to render the LDI tree to a low-resolution output image first, then
increase the resolution gradually. However, this method does not
utilize the coherence between the renderings of two different
resolutions.

To utilize the coherence between two renderings, we can tag
the octree cells that are traversed in the previous rendering and
skip them in the current rendering. Note that some filtered pixels
may have been warped to the output buffer if they are from the
leaf nodes of the subtree traversed in the previous rendering3.
Those pixels must also be tagged so they can be removed from the
output buffer if the leaf nodes in the previous rendering become
interior nodes in the current rendering.

3.5. Gap Filling
When we construct the LDI tree from many reference images,
chances are we have eliminated most of the disocclusion artifacts.
However, it is possible that some disocclusion artifacts still re-
main. We propose a two-pass algorithm that uses the filtered
pixels in the LDI tree to fill in the gaps in the output image. The
algorithm consists of the following steps:

1. The first pass is to render the output image from the LDI tree
as discussed in section 3.2.

3 See line 7 of the pseudo code in section 3.2.

2. A stencil (or coverage of pixels) is then built from the output
image.

3. Render the output image from the LDI tree again. But in this
pass, splat only the filtered pixels.

4. Use the stencil from step 2 to add the image from step 3 to
the image from step 1.

The stencil from step 2 allows the filtered pixels to draw only
to the gaps in the output image from step 1. This assumes that the
output image would be completely filled if no disocclusion arti-
fact occurred.4

Our gap filling method produces different results from the
meshing method described in Mark’s Post-Rendering 3D Warping
[11]. Figure 5 shows an example of the gap that is caused by a
front surface occluding a back surface. In the meshing method,
the gaps are covered by quadrilaterals stretching between the front
surface and the back surface (figure 5a). In contrast, our gap fill-
ing method splats the filtered samples from surfaces that surround
the gap in the output. As shown in figure 5b, the back surfaces
make more contribution to the gap than they do in the meshing
method. If we do not have additional surface connectivity infor-
mation in the original reference image, we believe the methods
like ours that are based on the filtering of existing samples are
more robust.

3.6. Analysis of Memory Requirement
Although a complete, fully expanded LDI tree may contain

too many LDIs to be practical for implementation, it is worth
noting that only a small subset of a complete LDI tree is used
when it is constructed from reference images.

When we construct the LDI tree from reference images, we
add a constant number of unfiltered LDI pixels to the octree cell
chosen for each pixel of reference images. We also add O(h)
filtered LDI pixels to the ancestor cells, where h is the number of
ancestors. That means the amount of memory taken by the LDI
tree grows in the same order as the amount taken by the original
reference images, only if h is bounded.

We can further assume that h is bounded because the maximal
height of the LDI tree exists. Let L be the longest side of bound-
ing box of the scene, N be the resolution of an LDI, d be the
smallest feature in the scene the human eyes can discern at a
minimum distance, and H be the maximal height of the LDI tree.
Then we have:

Although we do not include the memory overhead for main-
taining the octree, we also do not include the possible saving in
memory when pixels are merged in the LDIs. The experimental
results will be presented later in this paper to show that amount of
memory indeed grows at a slower rate than the number of refer-
ence images.

3.7. Rendering Time
An advantage that image-based rendering has over traditional
polygon-based rendering is that the rendering time does not grow
with the complexity of the scene. That advantage is still pre-
served in the rendering from the LDI tree, even though more lay-
ers of LDIs must be rendered. Let us consider the worst case in
which we need to render every pixel in the LDI tree. As discussed

4 See previous footnote 1 for special cases such as the windows in
the video and figure 11.

×
=

dN

L
H 2log

Figure 5: This example shows the different results of gap
filling from the meshing method and the method pre-
sented in this paper. (a) The meshing method. (b) The
gap filling method using filtered samples.

(a) (b)

295

previously, the number of pixels grows in the same order as the
original reference images. Therefore the time complexity of ren-
dering from the LDI tree is of the same order as warping all refer-
ence images in the worst case. Because larger cells are used for
farther objects, the worst case rarely happens and usually much
fewer pixels in the LDI tree are rendered. The experimental re-
sults are presented in the next section.

4. RESULTS
We implemented the LDI tree on a Silicon Graphics Onyx2 with
16 gigabytes of main memory. The machine has 32 250 MHz
MIPS R10000 processors but we did not exploit its parallel proc-
essing capability in our implementation.

We tested our program with a model of the interior of Pal-
ladio’s Il Redentore in Venice [16]. The reference images are
generated by ray tracing using the Rayshade program [5]. Each
reference image has 512×512 pixels and 90-degree field of view.
Figure 6 shows one of the reference images.

In synthesized scenes, an LDI can be generated directly by ray
tracing [19]. We do not include it in our framework because it
does not apply to the reference images acquired from non-
synthesized scenes, such as the depth images that are acquired by
a laser range finder.

Figure 7 shows the top view of the bounding boxes of the LDI
tree after two of the reference images are processed. Each cell has
an LDI of 64×64 resolution. The left face of each cell is also the
projection plane of its LDI. Note that the cells near the center of
projection of a reference image have more levels of subdivision.
Figure 8 shows a new view rendered from the LDI tree. We dis-
abled the gap filling to let the disocclusion artifacts appear in blue
background color. Figure 8 has severe disocclusion artifacts be-
cause only four reference images from the same viewpoint are
used. Figures 9 and 10 show the same view but with 12 and 36
reference images (from 3 and 9 viewpoints) respectively. Figure
11 is generated from the same LDI tree as figure 10 but with the
gap filling enabled.

The memory usage of the LDI trees is shown in chart 1. The
first reference image consumes about 30 Mbytes (MB) of mem-
ory. About 15 MB is the overhead of the octree. The resampling
and filtering (described in section 3.1) generates about 5 LDI
pixels for each input pixel. As more reference images are added,
the growth of the memory size slows. The last 60 images add less
than 1 MB per image in average. Note that the growth of the
memory size does not stop completely. That is because more
detail near each new viewpoint is still being added to the LDI
Tree.

Chart 2 shows the rendering time for various numbers of ref-
erence images. Each line represents the rendering times along the
path for a given number of reference images. The priority in our
experiment is the correctness. Therefore little optimization and
hardware acceleration were used to speed up the rendering. For
example, the splatting operation is implemented completely in
software simulation.

Chart 3 shows the growth of the (averaged) rendering time
when the number of reference images increases. It shows that the
rendering time grows even slower than the size of memory be-
cause some unnecessary details added from additional reference
images are not processed during the rendering.

5. CONCLUSION AND FUTURE WORK
Using multiple reference images in 3D image warping has been a
challenging problem. This paper describes the LDI tree, which

combines multiple reference images into a hierarchical represen-
tation and preserves their sampling rate of the scene. The LDI
tree allows the efficient extraction of the best available samples
for any view and uses filtered samples in the hierarchy to reduce
the rendering time. The filtered samples also enable the gap fill-
ing method presented in section 3.5.

We have assumed that each pixel of reference images pro-
vides only the color and depth information. No surface normal or
orientation information has been considered. A direction for fu-
ture work is to incorporate the surface orientation into our frame-
work, for use in the splatting and the calculation of stamp size.

When a surface is sampled in multiple reference images, we
should be able to get better sampling of the surface than what we
can get from any single image. How to explore this type of cross-
image supersampling is another direction of future work.

 Like the original LDI, pixels that fall into the same pixel lo-
cation and have similar depth values are merged together. That is
based on the assumption that the surface is diffuse and little view-
dependent variance can occur. How to extract view-dependent
properties of the surface is yet another direction for future work.

Chart 1: The memory usage of LDI trees.

Chart 2: The rendering time.

Chart 3: The average rendering time per frame.

Memory Usage

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100
Number of Reference Images

M
em

o
ry

 (
in

 M
B

yt
e)

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30

frame number

C
P

U
 t

im
e

(i
n

 s
ec

o
n

d
)

100 reference Images

36 reference Images

20 reference Images

12 reference Images

4 reference Images

Average Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80 90 100
Number of Reference Images

C
P

U
 t

im
e

(i
n

 s
ec

o
n

d
)

296

6. ACKNOWLEDGEMENTS
We thank David McAllister for generating the reference im-

ages used in this paper, Nathan O’Brien for creating the excellent
model of Il Redentore and the permission to use it, and the SIG-
GRAPH reviewers for their valuable comments. This work is
supported by DARPA ITO contract number E278 and NSF MIP-
9612643. Generous equipment support was provided by the Intel
Corporation.

7. REFERENCES
[1] C. H. Chien, Y. B. Sim and J. K. Aggarwal. Generation of

Volume/Surface Octree from Range Data. The Computer
Society Conference on Computer Vision and Pattern Recog-
nition, pages 254-60, June 1988.

[2] C. I. Connolly. Cumulative Generation of Octree Models
from Range Data. Proceedings, Intl’ Conf. Robotics, pages
25-32, March 1984.

[3] Brian Curless and Marc Levoy. A Volumetric Method for
Building Complex Models from Range Images. In Proceed-
ings of SIGGRAPH 1996, pages 303-312.

[4] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski and
Michael F. Cohen. The Lumigraph. In Proceedings of SIG-
GRAPH 1996, pages 43-54.

[5] Craig Kolb. Rayshade.
http://www-graphics.stanford.edu/~cek/rayshade/.

[6] David Laur and Pat Hanrahan. Hierarchical Splatting: A
Progressive Refinement Algorithm for Volume Rendering.
Computer Graphics (SIGGRAPH 91 Conference Proceed-
ings), volume 25, pages 285-288.

[7] Marc Levoy and Pat Hanrahan. Light Field Rendering. In
Proceedings of SIGGRAPH 1996, pages 31-42.

[8] A. Li and G. Crebbin. Octree Encoding of Objects from
Range Images. Pattern Recognition, 27(5):727-739, May
1994.

[9] Dani Lischinski and Ari Rappoport. Image-Based Rendering
for Non-Diffuse Synthetic Scenes. Rendering Techniques
‘98 (Proc. 9th Eurographics Workshop on Rendering).

[10] Robert W. Marcato Jr. Optimizing an Inverse Warper.
Master's of Engineering Thesis, Massachusetts Institute of
Technology, 1998.

[11] William R. Mark, Leonard McMillan and Gary Bishop.
Post-Rendering 3D Warping. Proceedings of the 1997 Sym-
posium on Interactive 3D Graphics, pages 7-16.

[12] Nelson Max. Hierarchical Rendering of Trees from Precom-
puted Multi-Layer Z-Buffers. Rendering Techniques ‘96
(Proc. 7th Eurographics Workshop on Rendering), pages
165-174.

[13] Leonard McMillan. A List-Priority Rendering Algorithm for
Redisplaying Projected Surfaces. Technical Report 95-005,
University of North Carolina at Chapel Hill, 1995.

[14] Leonard McMillan and Gary Bishop. Plenoptic Modeling.
In Proceedings of SIGGRAPH 1995, pages 39-46.

[15] Leonard McMillan. An Image-Based Approach to Three-
Dimensional Computer Graphics. Ph.D. Dissertation. Tech-
nical Report 97-013, University of North Carolina at Chapel
Hill. 1997.

[16] Nathan O’Brien. Rayshade - Il Redentore.
http://www.fbe.unsw.edu.au/exhibits/rayshade/church/

[17] Gernot Schaufler and Wolfgang Stürzlinger. A Three-
Dimensional Image Cache for Virtual Reality. In Proceed-
ings of Eurographics ’96, pages 227-236. August 1996.

[18] Jonathan Shade, Dani Lischinski, David H. Salesin, Tony
DeRose and John Snyder. Hierarchical Image Caching for
Accelerated Walkthrough of Complex Environments. In
Proceedings of SIGGRAPH 1996, pages 75-82.

[19] Jonathan Shade, Steven Gortler, Li-wei He and Richard Sze-
liski. Layered Depth Images. In Proceedings of SIGGRAPH
1998, pages 231-242.

[20] Lee Westover. SPLATTING: A Parallel, Feed-Forward
Volume Rendering Algorithm. Ph.D. Dissertation. Technical
Report 91-029, University of North Carolina at Chapel Hill.
1991.

297

Figure 9: A new view generated from 12 refer-
ence images (at three different positions).

Figure 8: A new view generated from four ref-
erence images (at the same position).

Figure 7: Top view of the octree cells after com-
bining two reference images.

Figure 6: One of the reference images.

Figure 11: A new view generated from 36 ref-
erence images. Gap filling is enabled.

Figure 10: A new view generated from 36 ref-
erence images (at 9 different positions).

298

	ABSTRACT
	INTRODUCTION
	RELATED WORK
	Inverse Warping
	Layered Depth Image
	Volumetric Methods
	Image Caching for Rendering Polygonal Models

	LDI TREE
	Constructing the LDI Tree from Multiple Reference Images
	Rendering the Output Images
	Compositing in the Output Buffer
	Progressive Refinement
	Gap Filling
	Analysis of Memory Requirement
	Rendering Time

	RESULTS
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

