
Fast Rendering of Complex Environments Using a Spatial Hierarchy

Bradford Chamberlain Tony DeRose
�

Dani Lischinski David Salesin John Snyder
�

University of Washington
�
Microsoft Research

Box 352350 One Microsoft Way
Seattle, WA 98195-2350 Redmond, WA 98052-6399

brad,derose,danix,salesin@cs.washington.edu johnsny@microsoft.com

Abstract
We present a new method for accelerating the render-

ing of complex static scenes. The technique is applica-
ble to unstructured scenes containing arbitrary geometric
primitives and has sublinear asymptotic complexity. Our
approach is to construct a spatial hierarchy of cells over
the scene and to associate with each cell a simplified rep-
resentation of its contents. The scene is then rendered us-
ing a traversal of the hierarchy in which a cell’s approxi-
mation is drawn instead of its contents if the approxima-
tion is sufficiently accurate. We apply the method to sev-
eral different scenes and demonstrate significant speedups
with little image degradation. We also exhibit and discuss
some of the artifacts that our approximation may cause.

Keywords: level-of-detail (LOD), multiresolution, octree,
rendering, spatial hierarchy, walkthrough.

1 Introduction

Advances in the throughput of rendering hardware are
continually offset by the need to render more and more
complex scenes. Virtual environments consisting of tens
or even hundreds of millions of polygons are becoming
increasingly common — for example, the Boeing 777
database contains over 500 million polygons (Brechner
1995). Environments of such extreme complexity cannot
be rendered in real-time using traditional means. Another
potential difficulty with rendering large databases is that
even the working set of data can potentially outgrow the
capacity of main memory or the local disk, so that net-
work bandwidth becomes the major bottleneck. To dis-
play truly complex scenes at interactive rates will require
rendering algorithms whose running times and working-
set memory requirements grow sub-linearly in the com-
plexity of the scene.

This paper describes a hierarchical method that acceler-
ates the rendering process without greatly sacrificing im-
age quality. Each node in the hierarchy represents a re-
gion of the scene, or cell. Associated with each cell is an�

Currently at Pixar Animation Studios, 1001 West Cutting Blvd.,
Richmond, CA 94804. E-mail: derose@pixar.com

approximation to the distant appearance of the geometry
contained within the cell. This approximation can be ren-
dered in less time than the geometry within the cell, and
is used in place of the geometry when the projected size
of the cell on the image plane is sufficiently small.

More specifically, our approach consists of subdividing
the input scene using an octree. The appearance of each
cell in the octree is approximated using a color-cube — a
cube with a color and opacity associated with each of its
six faces. The hierarchy is constructed as a preprocessing
step and serves as a multiresolution volumetric approxi-
mation to the original scene. At display time, regions of
the scene in the near field are drawn using actual geom-
etry. Regions further from the viewer are drawn by ren-
dering the faces of their associated color-cubes, with each
cube selected from the hierarchy so that it projects to no
more than a pixel on the display.

The major advantages of this approach are that it is
fully automatic, that it can take a completely unstructured
database of arbitrary geometric primitives as input, and
that it requires rendering time (and working-set memory
usage) that is asymptotically logarithmic in the number
of primitives. The approach is also designed to perform
particularly well on relatively unoccluded environments,
such as outdoor scenes, in which a large fraction of the
primitives are at least partially visible.

In the next section, we briefly compare our approach
to previous work. In Section 3 we present our algorithm,
addressing both its motivation and characteristics. Details
regarding the construction of the hierarchy are discussed
in Section 4. In Section 5, we present results of several
experiments using the method. Finally, we conclude and
offer directions for future work in Section 6.

2 Related Work

A number of techniques have been explored for acceler-
ating the rendering of complex environments.

One approach that has been extensively studied is to
use visibility culling to avoid displaying objects that are
completely occluded. This approach was first investi-

gated by Clark (1976), who used an object hierarchy to
rapidly cull surfaces that lie outside the viewing frustum.
Airey et al. (1990) and Teller (1992) extended this idea,
allowing rapid culling of surfaces that lie within the view-
ing volume but are occluded by other objects in the scene.
These approaches work well for scenes with large oc-
cluders, such as the walls in a building. The hierarchi-
cal Z-buffer (Greene, Kass, and Miller 1993) is another
approach to fast visibility culling that allows a region of
the scene to be culled whenever its closest depth value
is greater than those of the pixels that have already been
drawn at its projected screen location. Like previous ap-
proaches, this method can achieve dramatic speed-ups for
environments with significant occlusion but is less effec-
tive for largely unoccluded environments with high visi-
ble complexity, such as a model of a tree with thousands
of branches and leaves.

Another approach for accelerating rendering is the
use of multiresolution or level-of-detail (LOD) model-
ing. The idea is to use progressively coarse represen-
tations of a model as it moves away from the viewer.
Such an approach has been used since the early days of
flight simulators, and has more recently been incorpo-
rated in “walk through” systems for complex environ-
ments by Funkhouser and Séquin (1993), and Maciel and
Shirley (1995). Our work can be thought of as a kind of
LOD modeling, which uses a hierarchical representation
of the space in which the model is embedded, rather than
a hierarchical representation of the model itself. An ad-
vantage of this approach is that it is extremely general, al-
lowing for unstructured databases, as well as for clusters
of objects that overlap spatially.

One of the chief difficulties with the LOD approach is
the problem of generating the various coarse-level rep-
resentations of a model. Funkhouser and Séquin (1993)
created the different LOD models manually. Louns-
bery et al. (1994) and Eck et al. (1995) describe methods
based on wavelet analysis that can be used to automati-
cally create reasonably accurate low-detail models of sur-
faces. Maciel and Shirley (1995) used a number of LOD
representations, including geometric simplifications cre-
ated by Iris Performer (Rohlf and Helman 1994), texture
maps, and colored bounding boxes. Another approach
to creating LOD models is described by Rossignac and
Borrel (1992), in which objects of arbitrary topology are
simplified by collapsing groups of nearby vertices into a
single representative vertex, regardless of whether they
belong to the same logical part. Our approach can be
thought of as a technique for automatically creating LOD
models for regions of a scene, rather than for individual
objects in the scene.

A different approach for interactive scene display is

Figure 1: An example of how a scene is displayed using the
color-cube hierarchy. Shaded squares represent leaf cells whose
contained geometry is rendered. Dashed squares indicate cells
that are culled because they lie completely outside the viewing
frustum. Solid squares represent cells that can be drawn with
their color-cube approximation.

based on the idea of view interpolation, in which differ-
ent views of a scene are rendered as a preprocessing step,
and intermediate views are generated by performing im-
age morphing on the source images in real time. Chen
and Williams (1993) and McMillan and Bishop (1995)
have demonstrated two variants of this approach for re-
stricted movement in three-dimensional environments.
Another image-based approach, described by Regan and
Pose (1994), uses multiple display memories and image
compositing with depth to allow different parts of an en-
vironment to be updated at different rates. Only parts of
the environment that change or move significantly are re-
rendered from one frame to the next, resulting in the ma-
jority of objects being rendered infrequently.

Our approach is also related to volume rendering —
in particular to the hierarchical splatting idea developed
by Laur and Hanrahan (1991). Their algorithm renders
an octree-encoded volume model to a given error toler-
ance by rendering splats at different levels according to
the estimated error of rendering the level. Our work uses a
similar octree-based approach but is tailored to rendering
surface (polygonal) geometry rather than volume density
data. Specifically, we use a view-dependent representa-
tion of color and transparency in each octree cell, provide
a method for converting geometry to this representation,
and render actual geometry, rather than an approximation,
when the geometry is close to the viewer.

3 The Algorithm

We start by constructing an octree subdivision of the input
scene. With each cell in the octree we store a color-cube
— a cube bounding the cell whose faces have an associ-
ated color and opacity. The color and opacity of each cube

near field far field

depth:
h 2 40 h h 8h

d -2-1d d -3d

Figure 2: Our algorithm decomposes the viewing frustum into
a series of adjacent sub-frusta ����� � ���
	 � � � � � 	 . The � -th sub-
frustum corresponds to the region in which cells at level � of the
hierarchy form a valid far-field approximation.

face approximate the appearance of the cell’s geometry as
seen through an orthographic projection in the direction
of the face’s normal. This computation is performed as a
preprocessing step and is described in more detail in Sec-
tion 4.

To render the scene we recursively traverse the octree,
starting at the root:

Render(cell):
if no part of cell is in the view frustum return
if projected size of cell ��
 then

Draw cell ’s color-cube using a Z-buffer
else if cell is a leaf then

Draw cell ’s geometry using a Z-buffer
else

for each child of cell (in back to front order) do
Render(child)

end for
end if

Note that although back-to-front cell traversal would
seem to obviate the need for a Z-buffer, its use is never-
theless required to correctly render cells drawn as actual
geometry.

As the distance from the viewer increases, larger and
larger octree cells project to a screen size smaller than � ,
allowing increasingly large portions of the scene to be ren-
dered using the color-cube approximation rather than ge-
ometry. See Figure 1. We typically set the threshold � so
that color-cubes are drawn only for cells whose projected
screen image is no larger than a pixel. Larger values of
� can also be used to render lower-quality images in less
time.

Since a primitive may span multiple cells, one method
for drawing a cell’s geometry is to render each of its prim-
itives clipped to the cell boundaries. The same primitive

may then be rendered multiple times, once for each con-
taining cell. To avoid drawing a primitive more than once,
we render each primitive without any clipping and set a
flag indicating that it has already been drawn in the cur-
rent frame.

3.1 Complexity Analysis
In our analysis of the algorithm’s asymptotic complexity,
we make the following simplifying assumptions:

1. The depth of the octree is �
� � � ����� , where � is the
number of primitives.

2. The maximum number of geometric primitives per
leaf cell of the octree is constant.

These assumptions are true, for example, in the case of
a full octree decomposition of a uniform distribution of
primitives. These assumptions have also been empirically
verified for the test databases used in Section 5.

Consider a scene satisfying the above assumptions, and
let � denote the depth of the octree. We refer to the part
of the view frustum in which geometry must be rendered
as the near field, and the part in which color-cube ap-
proximations can be used as the far field. A far-field sub-
frustum � is the part of the viewing frustum in which cells
at depth � in the octree have projected size less than � (see
Figure 2). There are � such sub-frusta: one for each level
of the octree. Note that the ratio of heights of two adjacent
far-field sub-frusta is 1:2, and therefore the ratio of their
volumes is 1:8.

Since the volume of the sub-frusta grows commensu-
rately with the volume of the cells whose projected size is
less than � , the number of such cells per sub-frustum re-
mains constant. Thus, a constant number of cells needs
to be rendered for each of the ������� � � ����� sub-frusta, or
�
� � � ����� cells altogether. Furthermore, each far-field cell
is rendered in constant time, so �
� � � ����� time is required
to render these cells.

We must also count the time it takes to process the cells
in the near field, where the geometric primitives are drawn
explicitly. Under our assumptions, the number of leaf
cells in the near field is also bounded by a constant, in-
dependent of the number of primitives � . Since each leaf
cell also contains a constant number of primitives, the to-
tal rendering time for the near-field cells is �
� � � .

Finally, we must count the time spent recursively
checking whether a cell is inside the view frustum. Let �!

denote the part of the view frustum containing the near
field and sub-frusta � " ��#$� " % % % " & (see Figure 2). Now
consider a set of eight sibling cells at level & of the oc-
tree that are examined by the Render routine. At least
one of these siblings must lie inside

 '!
; otherwise, their

parent cell would have either been culled or drawn as a

color-cube, and these cells would not be tested at all. The
volume (�) can only contain a constant number of level*

cells, so the total number of level
*

cells examined by
Render is constant. Since there are +�, - . /�0�1 levels in the
octree, the total number of tested cells is also +
, - . /�0�1 .

In summary, it takes +
, - . /�0�1 time to render the cells in
the far field, +�, 2 1 time to render the geometry in the near
field, and +
, - . /�0�1 time to cull cells outside the viewing
frustum. The total time complexity is therefore +
, - . /�0�1 .

The same analysis also applies to the space complex-
ity of the algorithm. The working set of the algorithm is
defined as all the data required to render the scene from a
given view. As we have argued above, the octree traver-
sal for a given view requires an examination of +�, - . /�0�1
cells. Each cell contains either a fixed-size representation
for a color-cube, or a constant number of geometric primi-
tives. Thus the space complexity of the working set is also
+
, - . /�0�1 .

Another statistic of interest is the memory required to
store the entire scene database after preprocessing. Our
octree data structure stores all the original geometry us-
ing +
, 0�1 pointers, assuming each primitive is contained
in +�, 2 1 leaf cells. In addition to +�, 0�1 leaf cells there are
+
, 0�1 ancestor cells in the octree. Since each cell’s color-
cube requires a constant amount of storage, the total mem-
ory required is +�, 0�1 .
3.2 Discussion
Our method is similar in spirit to the Barnes-Hut algo-
rithm for the 0 -body problem (Barnes and Hut 1986).
This algorithm approximates the gravitational field due to
0 point masses in +
, - . /�0�1 time by replacing large but
distant clusters of points with a single point at their center
of mass.

One primary respect in which our algorithm differs
from Barnes-Hut is that our far-field approximation does
not become arbitrarily accurate as a cluster of geometric
primitives is moved sufficiently far away. In our case, the
appearance of such a cluster can be extremely sensitive to
the direction from which it is viewed. For instance, con-
sider a cluster of closely-spaced parallel polygons. As a
viewer moves around this cluster, the polygons act as a
“venetian blind”: a small change in viewing direction can
lead to very drastic changes in the way the polygons oc-
clude the scene behind them. Clearly, an approximation
based on six directional samples of the cluster’s distant
appearance is not adequate in such a case; indeed, it is
difficult to imagine that any constant-time representation
would be able to approximate the space of all possible cell
geometries arbitrarily well.

Our algorithm is capable of limiting the spatial extent
of the far-field approximation’s error to arbitrarily small
regions of the image plane, but the cumulative effect of

the errors in adjacent approximations can still cause large
scale errors and artifacts. We will discuss in detail a spe-
cific example exhibiting artifacts due to our approxima-
tion in Section 5.

4 Creating the Hierarchy

In our implementation, the hierarchy is built adaptively as
a preprocessing step to the display algorithm. We strive
for an octree whose depth at any point is logarithmic in
that region’s geometric complexity. To this end, a cost
is associated with each primitive that is proportional to
its rendering time. Similarly, we ascribe a cost to each
color-cube that will be used to compare its rendering time
with that of the original geometry. The implementation
uses triangles as its unit of cost; the cost of a color-cube
is deemed equivalent to 12 triangles (two triangles times
six faces).

The creation of the hierarchy begins with a single root
cell that contains all the scene’s primitives and whose ex-
tent spans the scene’s bounding volume. We then apply
a recursive process, called deepening, that considers the
merits of pushing the root cell’s primitives down one oc-
tree level. If the total cost of the cell’s primitives exceeds
the cost of the color-cubes that would be created for its
children, each primitive is pushed down into all of the
child cells that contain it, thereby deepening the octree.
When a primitive is split between multiple children, its
cost is divided evenly between them. This process is re-
peated for the new cells recursively until no further deep-
ening is warranted. Note that the resulting tree has prim-
itives only at its leaves.

Once the octree construction is complete, we create a
color-cube representation for every node in the hierarchy
by using post-order traversal of the octree. At each leaf
cell a color-cube is created by rendering its list of associ-
ated primitives to the screen, using an orthographic pro-
jection through each of its six faces. The resulting image
from each projection is used to compute the color of the
corresponding color-cube face, as described below. In ad-
dition to color values, we store a per-face opacity (alpha)
value (Porter and Duff 1984) to indicate the fraction of the
cell face that is covered by geometry.

Several different methods can be used to convert the
projected cell’s image to a single color value. The method
we use is to project the cell’s contained geometry to a
small screen image — typically, 3
453 pixels — and then
average these pixels together to obtain a single 68789
:
color value (where the resulting 6 , 7 , and 9 values are
“pre-multiplied” by the coverage :). With antialiased
polygon-drawing hardware (Akeley 1993) the 68789
:
color-cube approximation may be adequately computed
from just a single pixel. In some cases, it might also be

A B

C D

E F

G H AE BF

CG DH

RESULT

composite "over" average

Figure 3: Compositing and averaging child cells’ color-cube
faces.

advantageous to compute the ;8<>=>? value analytically,
rather than using the sampling approach that we have im-
plemented.

The color-cube approximation for each internal node
is computed by combining the ;8<8=
? colors of its eight
children, as shown in Figure 3. First, the front four cube
faces are composited over the back four, using an ordinary
“over” compositing operation (Porter and Duff 1984).
Then, the four resulting pixels are averaged to give a sin-
gle ;8<8=
? color for the internal node’s color-cube face.
This process is repeated for each of the six faces of the
internal node’s color cube. (Alternatively, the color-cube
approximations for internal nodes could be computed di-
rectly in the same fashion as color-cubes of the leaf nodes;
this would improve the internal-node color-cube approxi-
mations at the expense of some extra preprocessing time.)

Note that this procedure imposes very few require-
ments on the types of geometric primitives it can handle.
All that is required is to be able to determine the bounding
box of each primitive and to render it to the display. Thus,
new types of scene databases can be added to the system
with minimal effort.

5 Results

We used our method to render several databases, some
of which are shown in Plates 1, 2, and 3. Statistics for
these databases are given in Tables 1 and 2. All of the im-
ages and the statistics in this section were computed on
a Silicon Graphics Onyx RealityEngine2 equipped with
a 150MHz R4400 processor and 256MB of memory. All
geometric primitives and color-cube faces were drawn us-
ing OpenGL with @
AB@ samples per pixel.

Plate 1 illustrates our method using a tree model con-
taining 52,470 triangles. The four columns show the tree
rendered at four increasing distances from the viewer.
The top row shows the model rendered using all of its
original geometry; the middle row shows the model ren-
dered approximately using our method; and the bottom
row shows a magnified view of the approximation. In all
views, the model is rotated 30 degrees about the vertical
octree axis to give a sense of how well the approximation

does when viewed from a different direction than the ones
used to compute the color-cubes.

Plate 2 shows the same experiment for a model of a tu-
mor necrosis factor protein and its receptor (Banner et al.
1993). The model consists of 6,534 atoms (spheres), each
of which is rendered as 800 polygons, resulting in a to-
tal of 5.2 million polygons. In this series, the model is
viewed 25 degrees from a sampled direction.

Plate 3 shows a view of our third model, an island land-
scape with trees. The ground is modeled with 33,000
polygons and the trees add an additional 3.6 million poly-
gons.

Table 1 reports static data for these models. Note that
the increase in memory required for the tree model is
quite modest: approximately one-ninth the memory of the
database itself. For the molecule database, we see an in-
crease in the memory overhead. This is due to the fact that
the original model, though complex, can be compactly
represented by instancing a small set of atoms. Though
we can save memory by using the sphere as the geometric
primitive, the octree cannot take advantage of instancing
as the geometry could and therefore is rather large. The
island exhibits a larger memory overhead, due primarily
to the large number of primitives it contains and the stor-
age they require in the octree leaf cells.

Table 2 lists various statistics for the images in Plates 1
and 2. Note that the time to render the full geometry of the
tree is roughly constant for all views. With our method,
rendering time decreases dramatically as the model re-
cedes from the viewer, yielding a speedup factor of 5.4
for the farthest view. For the molecule database, our gains
over the original geometry are even more dramatic, yield-
ing a speedup of 136.289 in the farthest view.

As is evident in these plates, the images produced by
our method have a “softer”, more anti-aliased look than
the ones produced by simply rendering the geometry.
This effect is not surprising, since our method effectively
prefilters the geometry at a variety of resolutions as it cre-
ates the color-cube hierarchy, and then selects the appro-
priate resolution to render. This effect becomes even more
apparent in dynamic sequences when geometric models
demonstrate considerable aliasing artifacts.

The island database is different from the other models
in that its groundplane and trees are drawn using trian-
gles of vastly different sizes. The resulting octree there-
fore is roughly 15 levels deep at tree locations and only
5 levels deep in empty regions. Thus, for viewpoints
within the scene, the ground and nearby trees are ren-
dered as geometry while distant trees are drawn using
color-cubes. Speedups for the viewpoint shown in Plate 5
ranged from 22.7 for a 64 A 64 image to 1.73 for a
1024 A 1024 image (shown in Plate 5).

Database
Tree Tumor Necrosis Factor Molecule Island Landscape

Number of triangles 52,470 5,227,200 (6,534 spheres) 3,642,224
Required Memory 9,024,840 bytes 213,888 bytes 2,300,532 bytes
Levels in octree 9 25 15
Size of octree 6,967 nodes 343,483 nodes 238,321 nodes
Memory Overhead 1,017,250 bytes 24,492,482 bytes 52,561,676 bytes
Octree Creation Time 248 sec 1,099 sec 4,382 sec
Color-cube Creation Time 164 sec 3,979 sec 2,143 sec
Load from Disk 0.8 sec 20 sec 28 sec

Table 1: Database statistics. “Required Memory” is the memory needed to store the original geometry. “Memory Overhead” is
the additional memory needed to store the hierarchy (the octree nodes and their associated primitive lists). “Octree Creation Time”
is the time to construct the octree’s structure while “Color-cube Creation Time” is the time to create its color-cubes. “Load from
Disk” is the time required to load the octree and color-cube specifications from disk on successive runs.

Tree (Color Plate 1a)C
DFEHG I
degreesJ DFK L M N J D�G L N J DOM J D$K P

Geometric Time 0.212 sec 0.211 sec 0.208 sec 0.207 sec
Hierarchical Time 0.503 sec 0.397 sec 0.156 sec 0.038 sec
Speedup 0.4 Q 0.5 Q 1.3 Q 5.4 Q
Level 4 cube faces 0 0 0 3,452
Level 5 cube faces 0 0 11,246 0
Level 6 cube faces 0 14,024 0 0
Level 7 cube faces 1,688 0 0 0
Original Triangles 42,568 26,585 5,985 632

Tumor Necrosis Factor Molecule (Color Plate 1b)C
DOR N
degreesJ DFK L M N J D�G L N J DOM J D$K P

Geometric Time 5.774 sec 5.741 sec 5.526 sec 5.179 sec
Hierarchical Time 10.544 sec 1.251 sec 0.213 sec 0.038 sec
Speedup 0.5 Q 4.6 Q 25.9 Q 136.3 Q
Level 4 cube faces 0 0 0 5,384
Level 5 cube faces 0 0 30,328 0
Level 6 cube faces 0 176,919 0 0
Level 7 cube faces 748,634 0 0 0
Level 8 cube faces 4,083 0 0 0
Original Triangles 4,286,400 3,200 0 0

Table 2: Statistics for the views shown in Plate 1. “ S ” indicates the angle of view with respect to a sampled direction and “T ”
indicates the distance from the scene center in multiples of the object’s radius. All views are rendered as a U V W8X�U V W image. “Ge-
ometric Time” is the amount of time to draw the model using its geometry, whereas “Hierarchical Time” is the time required using
our method. Statistics are also given to indicate how many cube faces and triangles were rendered by our method.

0.1

(a) (b)

(c) (d)

1.0

1.0

1.0 1.0 1.0 1.0 1.0

1.0

1.0

0.3 0.2 0.2 0.2

Figure 4: (a) Original geometry and the leaf cell grid; (b),(c)
color-cube faces for two different directions (the number next to
each face indicates its opacity); (d) an off-axis view of the ap-
proximation.

5.1 Artifacts

Since our algorithm only approximates the appearance of
distant cells, it is important to understand when the ap-
proximation behaves well and when it behaves poorly.
Our experience has been that the hierarchy of semi-
transparent color-cubes generally does a good job of mod-
eling the distant appearance of “suspension-like” distribu-
tions of primitives that are uncorrelated and small relative
to the leaf cells of the octree. However, it does not gen-
erally do as well at representing the appearance of con-
tiguous surfaces that are large relative to the leaf cells,
such as the bust of Spock shown in Plate 4. The cen-
ter image shows the image created by our algorithm for a
viewing direction 45 degrees off axis. Notice in particular
that some of the space behind the bust incorrectly shows
through.

Figure 4 illustrates why this “tearing” artifact occurs.
When the original geometry is projected onto cell faces in
the preprocessing step, some cell faces (indicated by solid
lines in Figure 4(b–d)) are nearly opaque, while others
(indicated by dashed lines) are nearly transparent. When
the viewer looks at the approximation from an off-axis
direction, the background incorrectly shows through the
nearly transparent faces.

Another display artifact in the algorithm is caused by
our use of the Z-buffer. In cases where translucent color-
cubes intersect geometry, the visibility of the geometry
within the color-cube varies as the drawing order of the
cells changes. Although this artifact has been observed
while viewing models during debugging, its effects are
slight enough that they have not been noticable in prac-
tice.

5.2 Observed asymptotic behavior

0.1

1

10

100

1000

1 4 16 64 256 1024 4096 16384

R
en

de
ri

ng
 T

im
e

(s
ec

)

Number of Trees

geometry
hierarchy

Figure 5: A log-log plot of rendering times as a function of
scene complexity.

To demonstrate experimentally the logarithmic time com-
plexity of our algorithm, we created a sequence of in-
creasingly complex scenes by recursively instancing the
tree model from Plate 1. Several of these scenes are
shown in Plate 5. Rendering times for the sequence
are plotted in Figure 5 using a log-log scale. The plot
shows that there is good correspondence between the
measured rendering times and the predicted logarithmic
performance.

In this progression of databases, the crossover point
where our method becomes more advantageous to use
is around 20 trees (roughly 1 million polygons). For a
database containing 16,384 trees (859 million polygons),
our method gives a speedup factor of 88, becoming equiv-
alent to 39 million “raw” polygons per second.

6 Conclusion

We have developed an algorithm that significantly im-
proves rendering performance of complex environments,
using a spatial hierarchy in which the distant appear-
ance of each cell is approximated by a cube with semi-
transparent colored faces.

Although visual artifacts can sometimes arise, the algo-
rithm has the following desirable properties:

Y The algorithm can be used to display unstructured
databases consisting of arbitrary geometric primi-
tives (polygons, spline surfaces, fractals, etc.).

Y Under reasonably mild assumptions on the distribu-
tion of objects in the environment, rendering time
and working-set space have been shown to grow log-
arithmically in the number of primitives.

Z The algorithm is practical and fairly easy to imple-
ment on existing high-performance graphics work-
stations.Z The results of the algorithm animate well.

One drawback of our algorithm is that, while it han-
dles “suspension-like” objects (such as leafy trees) well,
it can produce noticeable artifacts when rendering con-
tinuous surfaces. On the other hand, many promising
approaches already exist for speeding the rendering of
continuous geometry, including multiresolution surfaces
(Eck et al. 1995) and other LOD approaches for sim-
plifying the geometry itself, and hierarchical Z-buffer al-
gorithms (Greene et al. 1993) for speeding the visibility
computations. One worthwhile direction for future work,
therefore, would be to look at combining our approach
with some of these other methods, employing various dif-
ferent techniques in rendering a given scene, according to
the particular geometry being rendered.

Acknowledgements
We would like to thank Eric Brechner, Ka Chai, Michael
Cohen, Hugues Hoppe, and Jack Tumblin for many use-
ful discussions during the early stages of this project; and
Jim Ahrens, Sean Anderson, Stuart Denman, Przemys-
law Prusinkiewicz, Jonathan Shade, Geoff Skillman, Eric
Stollnitz, and the scientists at Los Alamos for supply-
ing complex databases that we could use as test cases
for our algorithm. This work was supported by an NSF
Young Investigator award (CCR-9357790), an NSF Pres-
idential Faculty Fellowship (CCR-9553199), an ONR
Young Investigator award (N00014-95-1-0728), an Al-
fred P. Sloan Research Fellowship (BR-3495), and Mi-
crosoft Research.

References
Airey, J. M., J. H. Rohlf, and F. P. Brooks, Jr. (1990,

March). Towards image realism with interactive
update rates in complex virtual building environ-
ments. Computer Graphics (1990 Symposium on
Interactive 3D Graphics) 24(2), 41–50.

Akeley, K. (1993, August). RealityEngine graphics. In
Computer Graphics Proceedings, Annual Confer-
ence Series, ACM SIGGRAPH, pp. 109–116.

Banner, D. W., A. D’Arcy, W. Janes, R. Gentz, H. J.
Schoenfeld, C. Broger, H. Loetscher, and W. Less-
lauer (1993). Crystal structure of the soluble hu-
man 55 kd tnf receptor — human tnf beta complex:
implications for tnf receptor activation. Cell 73,
431–445.

Barnes, J. and P. Hut (1986, December). A hierarchi-
cal [
\]$^ _ `�]Ba force-calculation algorithm. Na-
ture 324, 446–449.

Brechner, E. (1995). Personal communication.

Chen, S. E. and L. Williams (1993, August). View
interpolation for image synthesis. In Computer
Graphics Proceedings, Annual Conference Series,
ACM SIGGRAPH, pp. 279–288.

Clark, J. H. (1976, October). Hierarchical geometric
models for visible surface algorithms. Communi-
cations of the ACM 19(10), 547–554.

Eck, M., T. DeRose, T. Duchamp, H. Hoppe,
M. Lounsbery, and W. Stuetzle (1995, August).
Multiresolution analysis for arbitrary meshes. In
Computer Graphics Proceedings, Annual Confer-
ence Series, ACM SIGGRAPH, pp. 173–182.

Funkhouser, T. A. and C. H. Séquin (1993, August).
Adaptive display algorithm for interactive frame
rates during visualization of complex virtual en-
vironments. In Computer Graphics Proceedings,
Annual Conference Series, ACM SIGGRAPH, pp.
247–254.

Greene, N., M. Kass, and G. Miller (1993, August). Hi-
erarchical z-buffer visibility. In Computer Graph-
ics Proceedings, Annual Conference Series, ACM
SIGGRAPH, pp. 231–238.

Laur, D. and P. Hanrahan (1991, July). Hierarchi-
cal splatting: A progressive refinement algorithm
for volume rendering. Computer Graphics (SIG-
GRAPH ’91 Proceedings) 25(4), 285–288.

Lounsbery, M., T. DeRose, and J. Warren (1994, Jan-
uary). Multiresolution surfaces of arbitrary topo-
logical type. Technical Report 93-10-05b, Depart-
ment of Computer Science and Engineering, Uni-
versity of Washington. To appear in ACM Transac-
tions on Graphics.

Maciel, P. W. C. and P. Shirley (1995, April). Vi-
sual navigation of large environments using tex-
tured clusters. In 1995 Symposium on Interactive
3D Graphics, ACM SIGGRAPH, pp. 95–102.

McMillan, L. and G. Bishop (1995, August). Plenop-
tic modeling: An image-based rendering system.
In Computer Graphics Proceedings, Annual Con-
ference Series, ACM SIGGRAPH, pp. 39–46.

Porter, T. and T. Duff (1984, July). Compositing dig-
ital images. Computer Graphics (SIGGRAPH ’84
Proceedings) 18(3), 253–259.

Regan, M. and R. Pose (1994, July). Priority rendering
with a virtual reality address recalculation pipeline.
In Computer Graphics Proceedings, Annual Con-
ference Series, ACM SIGGRAPH, pp. 155–162.

Rohlf, J. and J. Helman (1994, July). Iris Performer:
A high performance multiprocessing toolkit for
real-time 3D graphics. In Computer Graphics Pro-
ceedings, Annual Conference Series, ACM SIG-
GRAPH, pp. 381–394.

Rossignac, J. and P. Borrel (1992). Multi-resolution
3D approximations for rendering complex scenes.
Research Report RC 17697 (#77951), IBM, York-
town Heights, New York 10598. Also appeared in
the IFIP TC 5.WG 5.10.

Teller, S. J. (1992, October). Visibility Computations in
Densely Occluded Polyhedral Environments. Ph.
D. thesis, Computer Science Division (EECS), UC
Berkeley, Berkeley, California 94720. Available as
Report No. UCB/CSD-92-708.

