of linear functions. A function  $h: F^m \to F$  is linear iff for every pair of points  $(y_1, \ldots, y_m)$  and  $(z_1, \ldots, z_m)$  in  $F^m$  it satisfies

$$h(y_1 + z_1, \dots, y_m + z_m) = h(y_1, \dots, y_m) + h(z_1, \dots, z_m). \tag{4.14}$$

(The only if part of the statement is easy; the if part follows from Fact A.6 in the appendix.)

The procedure uses a stronger version of the above statement: if h satisfies the property in 4.14 for "most" pairs of m-tuples, then h is  $\delta$ -close for some small  $\delta$ .

```
Test for \delta-closeness; Procedure 4.1-(i).

Given: f: F^m \to F where F = GF(2).

repeat 6/\delta times:

Pick points y, z randomly from F^m.

if f(y) + f(z) \neq f(y + z)

/\star Note: + on the left is addition mod 2 and

/\star that on the right is componentwise addition mod 2.

exit and REJECT

exit and ACCEPT.
```

Complexity: The test requires  $12m/\delta$  random bits, and reads  $18/\delta$  values of f.

Correctness: Note that if  $f \in F_1[x_1, ..., x_m]$  then the test accepts with probability 1. According to the contrapositive to the next lemma, if f is not  $3\delta$ -close, then the basic step in the test fails with probability at least  $\delta$ . Hence, after repeating the basic step  $6/\delta$  times, the test rejects with probability close to  $1 - 1/e^2$ .

**Theorem 4.13 ([BLR90]):** Let F = GF(2) and f be a function from  $F^m$  to F such that when we pick y, z randomly from  $F^m$ ,

$$\Pr[f(y) + f(z) = f(y+z)] \ge 1 - \delta,$$

where  $\delta < 1/6$ . Then f is  $3\delta$ -close to some linear function.

**Proof:** The proof consists in three claims.

Claim 1: For every point  $b \in \mathbb{F}^m$  there is a value  $g(b) \in \{0,1\}$  such that

$$\Pr_{w \in \mathbb{F}^m} [f(w+b) - f(w) = g(b)] \ge 1 - 2\delta.$$

Proof: Let  $b \in F^m$ . Denote by p the probability  $\Pr_w[f(w+b)-f(w)=1]$ , where w is picked uniformly at random in  $F^m$ . Define random variables  $v_1, v_2$  (taking values in F) as follows. Pick points  $y, z \in F^m$  randomly and independently from  $F^m$ , and let  $v_1 = f(y+b) - f(y)$ , and  $v_2 = f(z+b) - f(z)$ . Clearly,  $v_1, v_2$  are independent random variables that take value 1 with probability p and 0 with probability p and 0 with probability p and 1 with probability p and 2 with probability p and 3 with probability p and 4 with probability p and 5 when the event p and 6 with probability p and 1 with probability p and 2 with probability p and 3 with probability p and 5 when the event p and p are p and p and p and p and p are p are p and p are p and p are p and p are p are p and p are p and p are p and p are p are p and p are p are p and p are p and p are p and p are p are p and p are p and p are p and p are p are p and p are p are p and p are p are p are p are p are p and p are p are p and p are p and p are p are

Note that + and - are the same over GF(2), so

$$v_1 - v_2 = f(y+b) - f(y) - (f(z+b) - f(z))$$
  
=  $(f(z+y+b) - f(y+b)) + (f(z+y+b) - f(z+b)) - f(y) - f(z)$ 

Further, y+b and z+b are independently chosen random points. Hence the probability that each of the following two events happens is at least  $1-\delta$ : "f(z+y+b)-f(y+b)=f(z)", and "f(z+y+b)-f(z+b)=f(y)." So the probability that they both happen is at least  $1-2\delta$ , that is,

$$\Pr[(f(z+y+b)-f(y+b))+(f(z+y+b)-f(z+b))-f(y)-f(z)=0] > 1-2\delta.$$

Thus  $\Pr[v_1 = v_2] \ge 1 - 2\delta$ , which finishes the proof of Claim 1.

Claim 2: The function g constructed in Claim 1 agrees with f in at least  $1-3\delta$  fraction of b in  $F^m$ .

*Proof:* Let  $\rho$  be the fraction of points  $b \in \mathbb{F}^m$  such that f(b) = g(b).

Pick y, z randomly from  $F^m$ , and denote by A the event "f(y+z) = g(y+z)," and by B the event "f(y) + f(y) = f(y+z)." Note that A and B need not be independent. However, the hypothesis of the theorem implies that  $\Pr[B] \ge 1 - \delta$ . Further our assumption was that  $\Pr[A] = \rho$ . Now note that

$$Pr[B] = Pr[B \land A] + Pr[B \land \overline{A}]$$

$$\leq Pr[A] + Pr[B \mid \overline{A}]$$

$$\leq \rho + 2\delta$$

where the last line uses the following implication of Claim 1:

$$\Pr["f(y) + f(z) = f(y+z)"|"f(y+z) \neq g(y+z)"] \le 2\delta.$$

But as we observed,  $\Pr[B] \ge 1 - \delta$ . Hence  $\rho \ge 1 - 3\delta$ . This finishes the proof of Claim 2.

Claim 3: Function g is linear, that is

$$\forall a, b \in \mathbb{F}^m, \quad q(a+b) = q(b) + q(a).$$

*Proof:* Fix arbitrary points  $a, b \in \mathbb{F}^m$ . To prove g(a+b) = g(a) + g(b), it suffices to prove the existence of points  $y, z \in \mathbb{F}^m$  such that each of the following is true: (i) f(b+a+y+z) - f(y+z) = g(a+b) (ii) f(b+a+y+z) - f(a+y+z) = g(b) and (iii) f(a+y+z) - f(y+z) = f(a).

For, if (i), (ii) and (iii) are true for any  $y, z \in \mathbb{F}^m$  then

$$\begin{array}{lcl} g(b+a) & = & f(b+a+y+z) - f(y+z) \\ & = & f(b+a+y+z) - f(a+y+z) + f(a+y+z) - f(y+z) \\ & = & g(b) + g(a) \end{array}$$

We prove the existence of the desired y, z in a probabilistic fashion. Choose y, z independently at random from  $F^m$ . The probability that any of (i), (ii), and (iii) is true is (by Claim 1) at least  $1-2\delta$ , and so the probability that all three are true is at least  $1-6\delta$ . Since  $6\delta < 1$ , the probability is strictly more than 0 that we obtain a pair y, z satisfying all the conditions of the claim. It follows that the desired pair y, z exists. This proves Claim 3.

Finally, note that Claims 2 and 3 imply (together with the fact in Equation 4.14) that f is  $(1-3\delta)$ -close.

Now we describe the other procedure connected with the linear function code.

```
Producing a value of \widetilde{f}; Procedure 4.1-(ii).
```

```
Given: f: \mathbf{F}^m \to \mathbf{F} that is \delta-close; \mathbf{F} = \mathbf{GF}(2).
Point b \in \mathbf{F}^m.
```

Pick random point y in  $F^m$ . output f(y+b) - f(y).

Complexity: The procedure uses 2m random bits and reads 2 values of f.

Correctness: If f is a linear function, then  $f = \tilde{f}$ , and  $\Pr_y[f(y+b) - f(y) = \tilde{f}(b)] = 1$ .

Now suppose f is just  $\delta$ -close to some linear function. The following lemma shows that the procedure works correctly.

**Lemma 4.14:** 
$$\Pr_{y}[f(y+b) - f(y) = \widetilde{f}(b)] \ge 1 - 2\delta.$$

**Proof:** Both y and y + b are uniformly distributed in  $F^m$  (although they are not independent), hence

$$\Pr[f(y) = \widetilde{f}(y)] \ge 1 - \delta \quad \text{and} \quad \Pr[f(y+b) = \widetilde{f}(y+b)] \ge 1 - \delta.$$