
Copyright 1997 Computer Science 217: Pointers Page 76

September 14, 1999

Pointer s

• Pointers are variables whose values are the addresses of other variables

• Basic operations

“address of” (reference)

“indirection” (dereference)

• Suppose x and y are integers, p is a pointer to an integer:

p = &x; p gets the address of x

y = *p; y gets the value pointed to by p

y = *(&x); same as y = x

• Declaration syntax mimics use of variables in expressions

int *p; *p is an int, so p is a pointer to an int

• Unary * and & bind more tightly than most other operators

y = *p + 1; y = (*p) + 1;

y = *p++; y = *(p++);

p

y

x5

5

Copyright 1997 Computer Science 217: Pointers Page 77

September 14, 1999

Pointer Ref erences

• Pointer references (e.g. *p) are variab les

int x, y, *px, *py;

px = &x; px is the address of x

*px = 0; sets x to 0

py = px; py also points to x

*py += 1; increments x to 1

y = (*px)++; sets y to 1, x to 2

• Passing pointers to functions sim ulates passing arguments “by
reference”

void swap(int x, int y) {
int t;

t = x;
x = y;
y = t;

}

int a = 1, b = 2;
swap(a, b);
printf("%d %d\n", a, b);

1 2

void swap(int *x, int *y) {
int t;

t = *x;
*x = *y;
*y = t;

}

int a = 1, b = 2;
swap(&a, &b) ;
printf("%d %d\n", a, b);

2 1

Copyright 1997 Computer Science 217: Pointers Page 78

September 14, 1999

Pointer s & Arra ys

• Pointers can “walk along” arrays
int a[10], i, *p, x;

p = &a[0]; p is the address of the 1st element of a
x = *p; x gets a[0]
x = *(p + 1); x gets a[1]
p = p + 1; p points to a[1], by definition
p++; p points to a[2]

• Array names are constant pointers
p = a; p points to a[0]
a++; illegal; can’t change a constant
p++; legal; p is a variable

• Subscripting, for any type, is defined in terms of pointers
a[i] *(a + i) i[a] is legal, too!
&a[i] a + i
p = &a[0] ⇒ &*(a + 0) ⇒ &*a ⇒ a

• Pointers can walk along arrays efficiently
p = a;
for (i = 0; i < 10; i++)

printf("%d\n", *p++);

Copyright 1997 Computer Science 217: Pointers Page 79

September 14, 1999

Pointer Arithmetic

• Pointer arithmetic takes into account the stride (size of) the value
pointed to

T *p;

p += i increment p by i elements
p -= i decrement p by i elements
p++ increment p by 1 element
p-- decrement p by 1 element

• If p and q are pointers to the same type T
p - q number of elements between p and q

• Does it make sense to add two pointers?

• Other operations: p < q; <= == != >= >
p and q must point to the same array; no runtime c hecks to insure this

• Example
int strlen(char *s) {

char *p;
for (p = s; *p; p++)

;
return p - s;

}

Copyright 1997 Computer Science 217: Pointers Page 80

September 14, 1999

Pointer s & Arra y Parameter s

• Array parameters:

array formal parameters are not constants, they are variab les

passing an array passes a pointer to the fir st element

arrays (and onl y arrays) are automatically passed “by reference”

void f(T a[]) {...} is equivalent to void f(T *a) {...}

• String constants denote constant pointers to the actual characters
char *msg = "now is the time"; char amsg[] = "now is the time";

char *msg = amsg;

msg points to the first character of "now is ..."

• Strings can be used wherever arrays of characters are used
putchar("0123456789"[i]); static char digits[] = "0123456789";

putchar(digits[i]);

• Is there any difference between

extern char x[]; extern char *x;

Copyright 1997 Computer Science 217: Pointers Page 81

September 14, 1999

Pointer s & Arra y Parameter s, cont’ d

• Copying strings: void scopy(char *s, char *t) copies t to s

• Arra y version:
void scopy(char s[], char t[]) {

int i = 0;
while ((s[i] = t[i]) != '\0')

i++;
}

• Pointer version:
void scopy(char *s, char *t) {

while (*s = *t) { while ((*s = *t) != 0)
s++;
t++;

}
}

• Idiomatic version:
void scopy(char *s, char *t) {

while (*s++ = *t++) while ((*s++ = *t++) != 0)
;

}

• Whic h one is better and wh y?

Copyright 1997 Computer Science 217: Pointers Page 82

September 14, 1999

Arra ys of P ointer s

• Arrays of pointers help build tabular structures

• Indirection (*) has lower precedence than []

char *line[100]; same as char *(line[100]);

declares an array of pointers to strings; declaration mimics use:
*line[i]

refers to the 0th character in the ith string

• Arrays of pointers can be initializ ed

char *month(int n) {
static char *name[] = {

"January",
"February",
...,
"December"

};

assert(n >= 1 && n <= 12);
return name[n-1];

}

int a, b;
int *x[] = { &a, &b, &b, &a, NULL };

name is visib le onl y within month;
allocated & initializ ed at compile time

0

x a

b

Copyright 1997 Computer Science 217: Pointers Page 83

September 14, 1999

Arra ys of P ointer s, cont’ d

• Arrays of pointers are similar to multi-dimensional arrays, but different
int a[10][10]; both a[i][j]
int *b[10]; b[i][j]

are legal references to ints

• Array a:
2-dimensional 10x10 array

storage for 100 elements allocated at compile time

a[6] is a constant ; a[i] cannot change during execution

each row of a has 10 elements

• Array b:
an array of 10 pointers; each element could point to an array

storage for 10 pointer elements allocated at compile time

values of these pointers must be initialized during execution

b[6] is a variab le; b[i] can change during execution

each row of b can have a different length; “ragged array”

Copyright 1997 Computer Science 217: Pointers Page 84

September 14, 1999

Command-Line Ar guments

• By convention, main is called with 2 arguments (actually 3!)
int main(int argc, char *argv[])

argc (“argument count”) is the number of command-line arguments
argv (“argument vector”) is an array of pointers to the arguments

• For the command echo hello, world
argc = 3
argv[0] = "echo"
argv[1] = "hello,"
argv[2] = "world"
argv[3] = NULL

• NULL is the null pointer , which points to nothing; defined to be 0

• Implementation of echo:
int main(int argc, char *argv[]) {

int i;
for(i = 1; i < argc; i++)

printf("%s%c", argv[i], (i < argc-1) ? ' ' : '\n');
return 0;

}

Copyright 1997 Computer Science 217: Pointers Page 85

September 14, 1999

More on ar gc and ar gv

• Another (less clear) implementation of echo:
int main(int argc, char **argv) {

while (--argc > 0)
printf("%s%c", *++argv, argc > 1 ? ' ' : '\n');

return 0;
}

initially, argv points to the program name:

*++argv increments argv to point the cell that points to "hello,", and indirection
fetches that pointer (a char *)

• Example

void f(int *a[10]); is the same as void f(int **a);
void g(int a[][10]); void g(int (*a)[10]);

**a = 1; is legal in both f and g; what gets changed in each?

argv

0

"hello,"

"world"

"echo"

Copyright 1997 Computer Science 217: Pointers Page 86

September 14, 1999

Pointer s to Functions

• Pointers to functions help parameteriz e other functions

void sort(void *v[], int n, int (*compare)(void *, void *)) {
...
if ((*compare)(v[i],v[j]) <= 0) {

...
}
...

}

• sort does not depend the type of the objects it’s sorting

it can sort arrays of pointers to any type

such functions are called generic or pol ymorphic functions

• Use an array of void * (generic pointers) to pass data

• void * is a placeholder

dereferencing a void * requires a cast to a specific type

Copyright 1997 Computer Science 217: Pointers Page 87

September 14, 1999

Pointer s to Functions, cont’ d

• Declaration syntax can confuse:

int (*compare)(void *, void *)

declares compare to be “a pointer to a function that takes two void * arguments
and returns an int”

int *compare(void *, void *)

declares compare to be “a function that takes two void * arguments and returns
a pointer to an int”

• Invocation syntax can also confuse:

(*compare)(v[i], v[j])

calls the function pointed to by compare with the arguments v[i] and v[j]

*compare(v[i], v[j])

calls the function compare with the arguments v[i] and v[j], then deref erences
the pointer value returned

• Function call has higher precedence than dereferencing

Copyright 1997 Computer Science 217: Pointers Page 88

September 14, 1999

Pointer s to Functions, cont’ d

• A function name itself is a constant pointer to a function (like array name)

#include <string.h> contains extern int strcmp(char *, char *);

main(int argc, char *argv[]) {
char *v[VSIZE];
...
sort(v, VSIZE, strcmp);
...

}

• Actually, both v and strcmp require a cast :

sort((void **)v, VSIZE, (int (*)(void *, void *))strcmp);

• Arrays of pointers to functions:

extern int mul(int, int), add(int, int), sub(int, int), ...;

int (*operators[])(int, int) = {
mul, add, sub, ...

};

to call the ith function: (*operators[i])(a, b);

