
Copyright 1997 Computer Science 217: Machine Organization Page 132

October 12, 1999

Computer Or ganization

Register s

ALU

FPU

Contr ol
Unit

Central Pr ocessing Unit (CPU)

Cache

Memor y

Displa yEthernetDiskPrinter

Adaptor

MBus

I/O Bus

Copyright 1997 Computer Science 217: Machine Organization Page 133

October 12, 1999

Stora ge Hierar chy

• Registers

fastest storage (as fast as CPU cycle time), but often very few (<128)

• Caches

“small” but faster than main memory with 1 to 3 levels (1K-4Mbytes)

• Memory

fairly fast (200ns) and quite large (1-1000Mbytes)

an array of cells made of dynamic random-access memory (DRAM)

each cell is usually a byte and has an address

most machines operate most efficiently on one data type called a word

words are typically composed of several cells, e.g., 4 bytes in 1 word

Address size may be unrelated to the amount of allowable memory

• Disk

long latency (10ms to find a block), but large (200M-10Gbytes)

• Tape

Very long latency (seconds to find a block), very low-cost and large (Gbytes)

Copyright 1997 Computer Science 217: Machine Organization Page 134

October 12, 1999

Compilation to Mac hine Code

• Compiler:
Source code Assembly language code

x = a + b; ld a, %r1

ld b, %r2

add %r1, %r2, %r3

st %r3, x

• Assembler

converts each assembly lang. instruction into a bit pattern that hardware understands

these bit patterns constitute machine code

Copyright 1997 Computer Science 217: Machine Organization Page 135

October 12, 1999

Machine Langua ge

• Machine language is the bit patterns that specify CPU instructions

• Understanding machine languages helps

build intuition about the cost of high-level functionality

learn about low-level operating system support;

understand how operating systems implement security

understand what compilers do and how to implement code generators

understand procedure call mechanisms

learn how to write very fast code, when — and only when — it’s necessary

design a better instruction set and faster processor

Copyright 1997 Computer Science 217: Machine Organization Page 136

October 12, 1999

Instruction Formats

• Instructions are composed of

opcode — specifies function to be performed

operands — data that is operated on

• Most machines have only a few formats

• Typical 0, 1, 2, 3-operand instruction format:

opcode
opcode dst
opcode src dst
opcode src1 src2 dst

Copyright 1997 Computer Science 217: Machine Organization Page 137

October 12, 1999

Instruction Ex ecution

• CPU’s algorithm f or executing a pr ogram:

PC <- memory location of the 1st instruction

while (PC != lastInstructionLocation) {

execute (MEM[PC];

};

• Each machine instruction has several phases

Fetch -- Instruction fetch, increment PC

Decode -- Instruction decode

Operand Fetch -- Fetch registers

Execute --Instruction execution

Store -- Store results

