
Copyright 1997 Computer Science 217: Data Structures Page 98

October 1, 1999

Self-Ref erential Data Structures

• Structures can hold pointers to instances of themselves

struct tree {
char *word;
int count;
struct tree *left, *right;

};

• Structures cannot contain instances of themselves:

struct tree {
char *word
int count;
struct tree left, right;

};

what is sizeof (struct tree)?

Copyright 1997 Computer Science 217: Data Structures Page 99

October 1, 1999

Dynamic Data Structures

• C library routines malloc and free allocate and deallocate memory
extern void *malloc(unsigned nbytes);

allocates nbytes of memory and returns a pointer to the 1st byte
extern void free(void *p)

deallocates the memory pointed to by p, which must come from malloc

• To create a new treenode:
typedef struct tree *Tree;

Tree talloc(void) {
return malloc(sizeof (struct tree));

}

• Better yet, provide arguments to initialize the new tree:
Tree talloc(char *word, int count, Tree left, Tree right) {

Tree t = malloc(sizeof *t);
t->word = word; t->count = count;
t->left = left; t->right = right;
return t;

}



Copyright 1997 Computer Science 217: Data Structures Page 100

October 1, 1999

Deallocating Memor y

• Delallocate a previously created tree:

void tfree(Tree t) {
 free(t);

}

• Other allocation functions:

extern void *calloc(unsigned n, unsigned nbytes)

allocates and clears memory for n copies of nbytes, e.g. an array of structures

extern void *realloc(void *p, unsigned size)

expands/shrinks the memory pointed by p to occupy nbytes; may relocate

• All allocation functions return NULL if there is no memory available

Copyright 1997 Computer Science 217: Data Structures Page 101

October 1, 1999

Example: Binar y Trees

• Function insert(Tree *p, char *word)
adds word to the tree rooted at p if word isn’t already in the tree
otherwise, it increments the count associated with word
void insert(Tree *p, char *word) {

Tree q = *p;

if (q) {
int cond = strcmp(word, q->word);
if (cond < 0)

insert(&q->left, word);
else if (cond > 0)

insert(&q->right, word);
else

q->count++;
} else

*p = talloc(strsave(word), 1, NULL, NULL);
}

• char strsave(char *s) makes a copy of string s and returns it
char *strsave(char *s) {

char *new = malloc(strlen(s) + 1);

assert(new);
return strcpy(new, s);

}

root

p

p


