Overview

Lecture T6: NP-Completeness

Lecture T4:

- . What is an algorithm?
 - Turing machine
- Which problems can be solved on a computer? – not the halting problem

Lecture T5:

Which algorithms will be useful in practice?
 polynomial vs. exponential algorithms

This lecture:

• Which problems can be solved in practice? – probably not 3-COLOR or TSP

Some Hard Problems

3-COLOR.

• Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

Some Hard Problems

3-COLOR.

• Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

Some Hard Problems

FACTOR.

- Given two positive integers x and U, is there a nontrivial factor of x that is less than U?
- Factoring is at the heart of RSA encryption.

Input 1: x = 23,536,481,273, U = 110,000 YES since x = 224,737 × 104,729.

Input 2: x = 23,536,481,277, U = 110,000 NO since x is prime. NO instance.

Some Hard Problems

TSP.

• A travelling salesperson needs to visit N cities. Is there a route of length at most D?

Is there a tour of length at most 1570?

Properties of Algorithms

A given problem can be solved by many different algorithms (TM's).

. Which ones are useful in practice?

A working definition: (Jack Edmonds, 1962)

- Efficient: polynomial time for ALL inputs.
 - mergesort requires N log₂N steps
- . Inefficient: "exponential time" for SOME inputs.
 - brute force TSP takes N! > 2^N steps

Robust definition has led to explosion of useful algorithms for wide spectrum of problems.

Exponential Growth

Exponential growth dwarfs technological change.

- Suppose each electron in the universe had power of today's supercomputers.
- And each works for the life of the universe in an effort to solve TSP problem using N! algorithm from Lecture P6.

Some Numbers

quantity	number
Home PC instructions/second	10 ⁹
Supercomputer instructions per second	10 ¹²
Seconds per year	10 ⁹
Age of universe in years (estimated)	10 ¹³
Electrons in universe (estimated)	10 ⁷⁹

• Will not succeed for 1,000 city TSP!

 $1000! >> 10^{1000} >> 10^{79} * 10^{13} * 10^9 * 10^{12}$

Properties of Problems

Which ALGORITHMS will be useful in practice?

- . Efficient: polynomial-time for ALL inputs.
 - broad and robust definition
 - covers virtually all algorithms running on actual computers
- . Inefficient: "exponential-time" for SOME inputs.

Which PROBLEMS will we be able to solve in practice?

- Those with efficient algorithms.
- . How can I tell if I am trying to solve such a problem?
 - 2-COLOR: yes
 - 3-COLOR: probably no
 - 4-COLOR: yes

Theorem (Appel-Haken, 1976). Every planar map is 4 colorable.

Ρ

Definition of P:

• Set of all decision problems solvable in polynomial time on a deterministic Turing machine.

Examples:

. MULTIPLE: Is the integer y a multiple of x?

- YES: (x, y) = (17, 51).

- RELPRIME: Are the integers x and y relatively prime?
 YES: (x, y) = (34, 39).
- MEDIAN: Given integers $x_1, ..., x_n$, is the median value < M? - NO: (M, x_1, x_2, x_3, x_4, x_5) = (17, 82, 5, 104, 22, 10)

Definition important because of Strong Church-Turing thesis.

Strong Church-Turing Thesis

Strong Church-Turing thesis:

P is the set of all decision problems solvable in polynomial time on **REAL** computers.

Evidence supporting thesis:

- . True for all physical computers.
 - can create deterministic TM that efficiently simulates TOY machine (and vice versa)
 - can create deterministic TM that efficiently simulates any real general-purpose machine (and vice versa)
- Possible exception?
 - quantum computers no conventional gates

NP Definition of NP: Definition of NP: Does NOT mean "not polynomial." Definition of NP: Definition important because it links many fundamental problems. Definit

NP = set of decision problems with efficient verification algorithms.

Why doesn't this imply that all problems in NP can be solved efficiently?

- BIG PROBLEM: need to know certificate ahead of time.
 - real computers can simulate by guessing all possible certificates and verifying
 - naïve simulation takes exponential time unless you get "lucky"

The Main Question

Does P = NP? (Edmonds, 1962)

- . Is the original DECISION problem as easy as VERIFICATION?
- . Does nondeterminism help you solve problems faster?

Most important open problem in computer science.

- . If yes, staggering practical significance.
- . Even ranked #3 in all of pure mathematics. (Smale, 1999)

The Main Question

Does P = NP?

. Is the original DECISION problem as easy as VERIFICATION?

If yes, then:

- Efficient algorithms for 3-COLOR, TSP, FACTOR.
- Cryptography is impossible (except for one-time pads) on conventional machines.
- Modern banking system will collapse.
- Harmonial bliss.

If no, then:

- Can't hope to write efficient algorithm for TSP.
 - see NP-completeness
- But maybe efficient algorithm still exists for factoring??

21

The Main Question

NP-Complete

Does P = NP?

. Is the original DECISION problem as easy as VERIFICATION?

Probably no, since:

- Thousands of researchers have spent four decades in search of polynomial algorithms for many fundamental NP problems without success.
- Consensus opinion: $P \neq NP$.

But maybe yes, since:

• No success in proving $P \neq NP$ either.

Definition of NP-complete:

- A problem with the property that if it can be solved efficiently, then it can be used as a subroutine to solve any other problem in NP efficiently.
- "Hardest computational problems" in NP.

NP-Complete

Definition of NP-complete:

 A problem in NP with the property that if it can be solved efficiently, then it can be used as a subroutine to solve any other problem in NP efficiently.

Links together a huge and diverse number of fundamental problems:

- . TSP, 3-COLOR, CIRCUIT-SAT, thousands more.
- Given an efficient algorithm for 3-COLOR, can efficiently solve TSP, CIRCUIT-SAT, FACTOR, etc.
- . Can implement any program in 3-COLOR.

Note: FACTOR not known to be NP-complete.

Notorious complexity class.

- Only exponential algorithms known for these problems.
- Called intractable unlikely that they can be solved given limited computing resources.

Reduction

Reduction is a general technique for showing that one problem is harder (easier) than another.

- For problems A and B, we can often show: if A can be solved efficiently, then so can B.
- In this case, we say B reduces to A. (B is "easier" than A).

Intuition: Finding median of n items reduces to sorting.

- Given an algorithm for sorting, want to design algorithm for finding the median.
 - Step 1: Sort x₁, x₂, x₃, . . ., x_N
 - Step 2: Compute m = N/2
 - Step 3: Return x_m

24

Reduction

Reduction is a general technique for showing that one problem is harder (easier) than another.

- For problems A and B, we can often show: if A can be solved efficiently, then so can B.
- . In this case, we say B reduces to A. (B is "easier" than A).

Warmup: PRIMALITY reduces to FACTOR.

- Given an efficient algorithm for FACTOR(X, L), want to design an efficient algorithm for PRIMALITY(p).
 - Step 1: Compute FACTOR(p, p).
 - Step 2: If answer = YES, return NO.
 Else return YES.
 - original problem: Is p = 23,536,481,273 prime?
 - transformed instance: Does X = 23,536,481,273 have a nontrivial factor less than L = 23,536,481,273?

The "World's First" NP-Complete Problem

SAT is NP-complete. (Cook-Levin, 1960's)

Idea of proof:

- By definition, nondeterministic TM can solve problem in NP in polynomial time.
- Polynomial-size Boolean formula can describe (nondeterministic) TM.
- Given any problem in NP, establish a correspondence with some instance of SAT.
- SAT solution gives simulation of TM solving the corresponding problem.
- IF SAT can be solved in polynomial time, then so can any problem in NP (e.g., TSP).

Stephen Cook

Coping With NP-Completeness

Hope that worst case doesn't occur.

- Complexity theory deals with worst case behavior. The instance(s) you want to solve may be "easy."
 - TSP where all points are on a line or circle
 - 13,509 US city TSP problem solved

(Cook et. al., 1998)

Coping With NP-Completeness

Hope that worst case doesn't occur.

Change the problem.

- . Develop a heuristic, and hope it produces a good solution.
 - TSP assignment.
- Design an approximation algorithm: algorithm that is guaranteed to find a high-quality solution in polynomial time.
 - active area of research, but not always possible!
 - Euclidean TSP tour within 1% of optimal

Sanjeev Arora (1997)

Coping With NP-Completeness

Hope that worst case doesn't occur.

Change the problem.

Exploit intractability.

Keep trying to prove P = NP.

Summary

Many fundamental problems are NP-complete.

• TSP, CIRCUIT-SAT, 3-COLOR.

Theory says we probably won't be able to design efficient algorithms for NP-complete problems.

- . You will likely run into these problems in your scientific life.
- If you know about NP-completeness, you can identify them and avoid wasting time.

Lecture T6: Extra Slides

Some Hard Problems

Some Hard Problems

SCHEDULE

• A set of jobs of varying length need to be processed on two identical machines before a certain deadline T. Can the jobs be arranged so that the deadline is met?

Some Hard Problems

CLIQUE

• Given N people and their pairwise relationships. Is there a group of S people such that every pair in the group knows each other.

Friendship Graph

A set of jobs of varying length need to be processed on two identical machines before a certain deadline T. Can the jobs be arranged so that the deadline is met?
 A B C D

Some Hard Problems

CLIQUE

SCHEDULE

• Given N people and their pairwise relationships. Is there a group of S people such that every pair in the group knows each other.

Friendship Graph

People: a, b, c, d, e, . . . , k Friendships: (a, e), (a, f), (a, g), . . . , (h, k) Clique size: S = 4? Yes - {b, d, i, h} is a witness.

a b c k d j e i f b g