
Lecture T6:  NP-Completeness

Can you color each of the 48 states red, white, or blue 
so that no two adjacent states have the same color?

2

Overview

Lecture T4:

■ What is an algorithm?
– Turing machine

■ Which problems can be solved on a computer?
– not the halting problem

Lecture T5:

■ Which algorithms will be useful in practice?
– polynomial vs. exponential algorithms

This lecture:

■ Which problems can be solved in practice?
– probably not 3-COLOR or TSP

3

Some Hard Problems

3-COLOR.

■ Given a planar map, can it be colored using 3 colors so that no 
adjacent regions have the same color?

YES instance.

4

Some Hard Problems

3-COLOR.

■ Given a planar map, can it be colored using 3 colors so that no 
adjacent regions have the same color?

NO instance.



5

Some Hard Problems

CIRCUIT-SAT.

■ Is there a way to assign
inputs to a given Boolean
(combinational) circuit
that makes it true?

YES instance.

NO instance.
6

Some Hard Problems

FACTOR.

■ Given two positive integers x and U, is there a nontrivial factor of x 
that is less than U?

■ Factoring is at the heart of RSA encryption.

Input 1: x = 23,536,481,273,  U = 110,000
YES since x = 224,737 × 104,729.

Input 2: x = 23,536,481,277,  U = 110,000
NO since x is prime.

YES instance.

NO instance.

7

Some Hard Problems

TSP.

■ A travelling salesperson needs to visit N cities.  Is there a route of 
length at most D?

Is there a tour of length at most 1570? 

8

Properties of Algorithms

A given problem can be solved by many different algorithms (TM’s).

■ Which ones are useful in practice?

A working definition:  (Jack Edmonds, 1962)

■ Efficient:  polynomial time for ALL inputs.
– mergesort requires N log2N steps

■ Inefficient:  "exponential time" for SOME inputs.
– brute force TSP takes N! > 2N steps

Robust definition has led to explosion of useful algorithms for wide 
spectrum of problems.



9

Exponential Growth

Exponential growth dwarfs technological change.

■ Suppose each electron in the universe had power of today’s 
supercomputers.

■ And each works for the life of the universe in an effort to solve TSP 
problem using N! algorithm from Lecture P6.

■ Will not succeed for 1,000 city TSP!

1000!  >>  101000 >>  1079 * 1013 * 109 * 1012

Some Numbers
quantity number

Home PC instructions/second 109

Supercomputer instructions per second 1012

Seconds per year 109

Age of universe in years (estimated) 1013

Electrons in universe (estimated) 1079

10

Properties of Problems

Which ALGORITHMS will be useful in practice?

■ Efficient:  polynomial-time for ALL inputs.
– broad and robust definition
– covers virtually all algorithms running on actual computers

■ Inefficient:  "exponential-time" for SOME inputs. 

Which PROBLEMS will we be able to solve in practice?

■ Those with efficient algorithms.

■ How can I tell if I am trying to solve such a problem?
– 2-COLOR:  yes
– 3-COLOR:  probably no
– 4-COLOR:  yes

Theorem (Appel-Haken, 1976).
Every planar map is 4 colorable.

11

P

Definition of P:
■ Set of all decision problems solvable in polynomial time on a 

deterministic Turing machine.

Examples:
■ MULTIPLE:  Is the integer y a multiple of x?

– YES: (x, y) = (17, 51).
■ RELPRIME:  Are the integers x and y relatively prime?

– YES:  (x, y) = (34, 39).
■ MEDIAN:  Given integers x1, …, xn, is the median value < M?

– NO:  (M, x1, x2, x3, x4, x5) = (17, 82, 5, 104, 22, 10)

Definition important because of Strong Church-Turing thesis.

12

Strong Church-Turing Thesis

Strong Church-Turing thesis:
■ P is the set of all decision problems solvable in polynomial time on 

REAL computers.

Evidence supporting thesis:
■ True for all physical computers.

– can create deterministic TM that efficiently simulates TOY 
machine (and vice versa)

– can create deterministic TM that efficiently simulates any real 
general-purpose machine (and vice versa)

■ Possible exception?
– quantum computers – no conventional gates



13

NP

Definition of NP:

■ Does NOT mean "not polynomial."

14

NP

Definition of NP:

■ Set of all decision problems solvable in polynomial time on a 
NONDETERMINISTIC Turing machine.

■ Definition important because it links many fundamental problems.

Useful alternate definition:

■ Set of all decision problems with efficient verification algorithms.
– efficient = polynomial number of steps on deterministic TM

■ Verifier:  algorithm for decision problem with extra input.
! Original input.
! Polynomial-size CERTIFICATE (a hint).

■ Intuition: nondeterministic TM can try all possible solutions in
parallel.

15

Verifiers and Certificates

COMPOSITE:  Given integer x, is x composite?

■ YES instance:  x = 23,536,481,273.
– a corresponding certificate:

c = 104,729  (a factor)
– every YES instance has

such a certificate

Verifier:
Is x a multiple of c?

NO

Input x:
23,536,481,273

Certificate c:  
104,729

x is a YES instance no conclusion

YES

16

Verifiers and Certificates

COMPOSITE:  Given integer x, is x composite?

■ YES instance:  x = 23,536,481,273.
– a corresponding certificate:

c = 104,729  (a factor)
– every YES instance has

such a certificate

■ NO instance:  x = 23,536,481,277.
– no NO instance has a valid

certificate
– can never fool verifier into

saying YES

■ Conclusion:  COMPOSITE is in NP.

Verifier:
Is x a multiple of c?

NO

Input x:
23,536,481,277

Certificate c:  
??????

x is a YES instance no conclusion

YES



17

Verifiers and Certificates

3-COLOR:  Given planar map, can it be colored with 3 colors?

Verifier:
1. Check that x and c describe same map.
2. Count number of distinct colors in c.
3. Check all pairs of adjacent states.

NO

Input x: Certificate c:

x is a YES instance no conclusion

YES
3-COLOR is in NP.

18

NP

NP = set of decision problems with efficient verification algorithms.

Why doesn’t this imply that all problems in NP can be solved 
efficiently?

■ BIG PROBLEM:  need to know certificate ahead of time.
– real computers can simulate by guessing

all possible certificates and verifying
– naïve simulation takes exponential time unless

you get "lucky"

19

The Main Question

Does P = NP? (Edmonds, 1962)

■ Is the original DECISION problem as easy as VERIFICATION?

■ Does nondeterminism help you solve problems faster?

Most important open problem in computer science.

■ If yes, staggering practical significance.

■ Even ranked #3 in all of pure mathematics.  (Smale, 1999)

NP

P

If  P ≠ NP If  P = NP

P = NP

21

The Main Question

Does P = NP?

■ Is the original DECISION problem as easy as VERIFICATION?

If yes, then:

■ Efficient algorithms for 3-COLOR, TSP, FACTOR.

■ Cryptography is impossible (except for one-time pads) on 
conventional machines.

■ Modern banking system will collapse.

■ Harmonial bliss.

If no, then:

■ Can’t hope to write efficient algorithm for TSP.
– see NP-completeness

■ But maybe efficient algorithm still exists for factoring??



22

The Main Question

Does P = NP?

■ Is the original DECISION problem as easy as VERIFICATION?

Probably no, since:

■ Thousands of researchers have spent four decades in search of 
polynomial algorithms for many fundamental NP problems without 
success.

■ Consensus opinion:  P ≠ NP.

But maybe yes, since:

■ No success in proving P ≠ NP either.

23

NP-Complete

Definition of NP-complete:

■ A problem with the property that if it can be solved efficiently, then 
it can be used as a subroutine to solve any other problem in NP 
efficiently.

■ "Hardest computational problems" in NP.

P = NP = NP-complete

NP

NP-
completeP

If  P ≠ NP If  P = NP

24

NP-Complete

Definition of NP-complete:

■ A problem in NP with the property that if it can be solved 
efficiently, then it can be used as a subroutine to solve any other 
problem in NP efficiently.

Links together a huge and diverse number of fundamental problems:

■ TSP, 3-COLOR, CIRCUIT-SAT, thousands more.

■ Given an efficient algorithm for 3-COLOR, can efficiently solve 
TSP, CIRCUIT-SAT, FACTOR, etc.

■ Can implement any program in 3-COLOR. 

Note:  FACTOR not known to be NP-complete.

Notorious complexity class.

■ Only exponential algorithms known for these problems.

■ Called intractable - unlikely that they can be solved given limited 
computing resources.

28

Reduction

Reduction is a general technique for showing that one problem is
harder (easier) than another.

■ For problems A and B, we can often show:  if A can be solved 
efficiently, then so can B.

■ In this case, we say B reduces to A.  (B is "easier" than A).

Intuition:  Finding median of n items reduces to sorting.

■ Given an algorithm for sorting, want to design algorithm for finding 
the median.

– Step 1:  Sort x1, x2, x3, . . ., xN

– Step 2:  Compute m = N / 2

– Step 3:  Return xm



29

Reduction

Reduction is a general technique for showing that one problem is
harder (easier) than another.

■ For problems A and B, we can often show:  if A can be solved 
efficiently, then so can B.

■ In this case, we say B reduces to A.  (B is "easier" than A).

Warmup:  PRIMALITY reduces to FACTOR.

■ Given an efficient algorithm for FACTOR(X, L), want to design an
efficient algorithm for PRIMALITY(p). 

– Step 1:  Compute FACTOR(p, p).
– Step 2:  If answer = YES, return NO.

Else return YES.

– original problem:  Is p = 23,536,481,273 prime?
– transformed instance: Does X = 23,536,481,273 have a nontrivial 

factor less than L = 23,536,481,273?

30

Reduction

SATISFIABILITY

3SAT

3DM VERTEX 
COVER

HAMILTONIAN
CIRCUIT

CLIQUE

INDEPENDENT
SET

GRAPH
3-COLOR

PLANAR
3-COLOR

EXACT
COVER

TSP

SUBSET-SUM

PARTITION INTEGER
PROGRAMMING

KNAPSACK

Dick Karp (1972)

31

The "World’s First" NP-Complete Problem

SAT is NP-complete.  (Cook-Levin, 1960’s)

Idea of proof:

■ By definition, nondeterministic TM can solve 
problem in NP in polynomial time.

■ Polynomial-size Boolean formula can describe 
(nondeterministic) TM.

■ Given any problem in NP, establish a 
correspondence with some instance of SAT.

■ SAT solution gives simulation of TM solving 
the corresponding problem.

■ IF SAT can be solved in polynomial time, then 
so can any problem in NP (e.g., TSP).

Stephen Cook

32

Coping With NP-Completeness

Hope that worst case doesn’t occur. 

■ Complexity theory deals with worst case behavior.  The instance(s) 
you want to solve may be "easy."

– TSP where all points are on a line or circle
– 13,509 US city TSP problem solved

(Cook et. al., 1998)



33

Coping With NP-Completeness

Hope that worst case doesn’t occur. 

Change the problem.

■ Develop a heuristic, and hope it produces a good solution.
– TSP assignment.

■ Design an approximation algorithm: algorithm that is guaranteed 
to find a high-quality solution in polynomial time.

– active area of research, but not always possible!
– Euclidean TSP tour within 1% of optimal

Sanjeev Arora (1997)

35

Coping With NP-Completeness

Hope that worst case doesn’t occur. 

Change the problem.

Exploit intractability.

Keep trying to prove P = NP.

37

Summary

Many fundamental problems are NP-complete.

■ TSP, CIRCUIT-SAT, 3-COLOR.

Theory says we probably won’t be able to design efficient algorithms 
for NP-complete problems.

■ You will likely run into these problems in your scientific life.

■ If you know about NP-completeness, you can identify them and 
avoid wasting time.

Lecture T6:  Extra Slides



42

Some Hard Problems

SCHEDULE

■ A set of jobs of varying length need to be processed on two 
identical machines before a certain deadline T.  Can the jobs be
arranged so that the deadline is met?

A D

F

B C

GE

Machine 2

Machine 1

Time T0

length of job F

43

Machine 2

Machine 1

Some Hard Problems

SCHEDULE

■ A set of jobs of varying length need to be processed on two 
identical machines before a certain deadline T.  Can the jobs be
arranged so that the deadline is met?

A D F

B C E

Time T0

G

Yes.

A D

F

B C

GE

length of job F

44

Some Hard Problems

CLIQUE

■ Given N people and their pairwise relationships.  Is there a group 
of S people such that every pair in the group knows each other.

ba c

h g

f

e

d

i

j

k

Friendship Graph
People: a, b, c, d, e, . . ., k

Friendships: (a, e), (a, f), (a, g), . . ., (h, k)

Clique size: S = 4?

45

Some Hard Problems

CLIQUE

■ Given N people and their pairwise relationships.  Is there a group 
of S people such that every pair in the group knows each other.

ba c

h g

f

e

d

i

j

k

Friendship Graph
People: a, b, c, d, e, . . ., k

Friendships: (a, e), (a, f), (a, g), . . ., (h, k)

Clique size: S = 4?

Yes - {b, d, i, h} is a witness.


