
Lecture T6:  NP-Completeness

Can you color each of the 48 states red, white, or blue 
so that no two adjacent states have the same color?
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Overview

Lecture T4:

■ What is an algorithm?
– Turing machine

■ Which problems can be solved on a computer?
– not the halting problem

Lecture T5:

■ Which algorithms will be useful in practice?
– polynomial vs. exponential algorithms

This lecture:

■ Which problems can be solved in practice?
– probably not 3-COLOR or TSP
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Some Hard Problems

3-COLOR.

■ Given a planar map, can it be colored using 3 colors so that no 
adjacent regions have the same color?

YES instance.
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Some Hard Problems

3-COLOR.

■ Given a planar map, can it be colored using 3 colors so that no 
adjacent regions have the same color?

NO instance.
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Some Hard Problems

CIRCUIT-SAT.

■ Is there a way to assign
inputs to a given Boolean
(combinational) circuit
that makes it true?

YES instance.

NO instance.
6

Some Hard Problems

FACTOR.

■ Given two positive integers x and U, is there a nontrivial factor of x 
that is less than U?

■ Factoring is at the heart of RSA encryption.

Input 1: x = 23,536,481,273,  U = 110,000
YES since x = 224,737 × 104,729.

Input 2: x = 23,536,481,277,  U = 110,000
NO since x is prime.

YES instance.

NO instance.
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Some Hard Problems

TSP.

■ A travelling salesperson needs to visit N cities.  Is there a route of 
length at most D?

Is there a tour of length at most 1570? 

8

Properties of Algorithms

A given problem can be solved by many different algorithms (TM’s).

■ Which ones are useful in practice?

A working definition:  (Jack Edmonds, 1962)

■ Efficient:  polynomial time for ALL inputs.
– mergesort requires N log2N steps

■ Inefficient:  "exponential time" for SOME inputs.
– brute force TSP takes N! > 2N steps

Robust definition has led to explosion of useful algorithms for wide 
spectrum of problems.
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Exponential Growth

Exponential growth dwarfs technological change.

■ Suppose each electron in the universe had power of today’s 
supercomputers.

■ And each works for the life of the universe in an effort to solve TSP 
problem using N! algorithm from Lecture P6.

■ Will not succeed for 1,000 city TSP!

1000!  >>  101000 >>  1079 * 1013 * 109 * 1012

Some Numbers
quantity number

Home PC instructions/second 109

Supercomputer instructions per second 1012

Seconds per year 109

Age of universe in years (estimated) 1013

Electrons in universe (estimated) 1079
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Properties of Problems

Which ALGORITHMS will be useful in practice?

■ Efficient:  polynomial-time for ALL inputs.
– broad and robust definition
– covers virtually all algorithms running on actual computers

■ Inefficient:  "exponential-time" for SOME inputs. 

Which PROBLEMS will we be able to solve in practice?

■ Those with efficient algorithms.

■ How can I tell if I am trying to solve such a problem?
– 2-COLOR:  yes
– 3-COLOR:  probably no
– 4-COLOR:  yes

Theorem (Appel-Haken, 1976).
Every planar map is 4 colorable.
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P

Definition of P:
■ Set of all decision problems solvable in polynomial time on a 

deterministic Turing machine.

Examples:
■ MULTIPLE:  Is the integer y a multiple of x?

– YES: (x, y) = (17, 51).
■ RELPRIME:  Are the integers x and y relatively prime?

– YES:  (x, y) = (34, 39).
■ MEDIAN:  Given integers x1, …, xn, is the median value < M?

– NO:  (M, x1, x2, x3, x4, x5) = (17, 82, 5, 104, 22, 10)

Definition important because of Strong Church-Turing thesis.
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Strong Church-Turing Thesis

Strong Church-Turing thesis:
■ P is the set of all decision problems solvable in polynomial time on 

REAL computers.

Evidence supporting thesis:
■ True for all physical computers.

– can create deterministic TM that efficiently simulates TOY 
machine (and vice versa)

– can create deterministic TM that efficiently simulates any real 
general-purpose machine (and vice versa)

■ Possible exception?
– quantum computers – no conventional gates
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NP

Definition of NP:

■ Does NOT mean "not polynomial."
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NP

Definition of NP:

■ Set of all decision problems solvable in polynomial time on a 
NONDETERMINISTIC Turing machine.

■ Definition important because it links many fundamental problems.

Useful alternate definition:

■ Set of all decision problems with efficient verification algorithms.
– efficient = polynomial number of steps on deterministic TM

■ Verifier:  algorithm for decision problem with extra input.
! Original input.
! Polynomial-size CERTIFICATE (a hint).

■ Intuition: nondeterministic TM can try all possible solutions in
parallel.
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Verifiers and Certificates

COMPOSITE:  Given integer x, is x composite?

■ YES instance:  x = 23,536,481,273.
– a corresponding certificate:

c = 104,729  (a factor)
– every YES instance has

such a certificate

Verifier:
Is x a multiple of c?

NO

Input x:
23,536,481,273

Certificate c:  
104,729

x is a YES instance no conclusion

YES
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Verifiers and Certificates

COMPOSITE:  Given integer x, is x composite?

■ YES instance:  x = 23,536,481,273.
– a corresponding certificate:

c = 104,729  (a factor)
– every YES instance has

such a certificate

■ NO instance:  x = 23,536,481,277.
– no NO instance has a valid

certificate
– can never fool verifier into

saying YES

■ Conclusion:  COMPOSITE is in NP.

Verifier:
Is x a multiple of c?

NO

Input x:
23,536,481,277

Certificate c:  
??????

x is a YES instance no conclusion

YES
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Verifiers and Certificates

3-COLOR:  Given planar map, can it be colored with 3 colors?

Verifier:
1. Check that x and c describe same map.
2. Count number of distinct colors in c.
3. Check all pairs of adjacent states.

NO

Input x: Certificate c:

x is a YES instance no conclusion

YES
3-COLOR is in NP.
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NP

NP = set of decision problems with efficient verification algorithms.

Why doesn’t this imply that all problems in NP can be solved 
efficiently?

■ BIG PROBLEM:  need to know certificate ahead of time.
– real computers can simulate by guessing

all possible certificates and verifying
– naïve simulation takes exponential time unless

you get "lucky"
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The Main Question

Does P = NP? (Edmonds, 1962)

■ Is the original DECISION problem as easy as VERIFICATION?

■ Does nondeterminism help you solve problems faster?

Most important open problem in computer science.

■ If yes, staggering practical significance.

■ Even ranked #3 in all of pure mathematics.  (Smale, 1999)

NP

P

If  P ≠ NP If  P = NP

P = NP
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The Main Question

Does P = NP?

■ Is the original DECISION problem as easy as VERIFICATION?

If yes, then:

■ Efficient algorithms for 3-COLOR, TSP, FACTOR.

■ Cryptography is impossible (except for one-time pads) on 
conventional machines.

■ Modern banking system will collapse.

■ Harmonial bliss.

If no, then:

■ Can’t hope to write efficient algorithm for TSP.
– see NP-completeness

■ But maybe efficient algorithm still exists for factoring??
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The Main Question

Does P = NP?

■ Is the original DECISION problem as easy as VERIFICATION?

Probably no, since:

■ Thousands of researchers have spent four decades in search of 
polynomial algorithms for many fundamental NP problems without 
success.

■ Consensus opinion:  P ≠ NP.

But maybe yes, since:

■ No success in proving P ≠ NP either.
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NP-Complete

Definition of NP-complete:

■ A problem with the property that if it can be solved efficiently, then 
it can be used as a subroutine to solve any other problem in NP 
efficiently.

■ "Hardest computational problems" in NP.

P = NP = NP-complete

NP

NP-
completeP

If  P ≠ NP If  P = NP
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NP-Complete

Definition of NP-complete:

■ A problem in NP with the property that if it can be solved 
efficiently, then it can be used as a subroutine to solve any other 
problem in NP efficiently.

Links together a huge and diverse number of fundamental problems:

■ TSP, 3-COLOR, CIRCUIT-SAT, thousands more.

■ Given an efficient algorithm for 3-COLOR, can efficiently solve 
TSP, CIRCUIT-SAT, FACTOR, etc.

■ Can implement any program in 3-COLOR. 

Note:  FACTOR not known to be NP-complete.

Notorious complexity class.

■ Only exponential algorithms known for these problems.

■ Called intractable - unlikely that they can be solved given limited 
computing resources.
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Reduction

Reduction is a general technique for showing that one problem is
harder (easier) than another.

■ For problems A and B, we can often show:  if A can be solved 
efficiently, then so can B.

■ In this case, we say B reduces to A.  (B is "easier" than A).

Intuition:  Finding median of n items reduces to sorting.

■ Given an algorithm for sorting, want to design algorithm for finding 
the median.

– Step 1:  Sort x1, x2, x3, . . ., xN

– Step 2:  Compute m = N / 2

– Step 3:  Return xm
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Reduction

Reduction is a general technique for showing that one problem is
harder (easier) than another.

■ For problems A and B, we can often show:  if A can be solved 
efficiently, then so can B.

■ In this case, we say B reduces to A.  (B is "easier" than A).

Warmup:  PRIMALITY reduces to FACTOR.

■ Given an efficient algorithm for FACTOR(X, L), want to design an
efficient algorithm for PRIMALITY(p). 

– Step 1:  Compute FACTOR(p, p).
– Step 2:  If answer = YES, return NO.

Else return YES.

– original problem:  Is p = 23,536,481,273 prime?
– transformed instance: Does X = 23,536,481,273 have a nontrivial 

factor less than L = 23,536,481,273?
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Reduction

SATISFIABILITY

3SAT

3DM VERTEX 
COVER

HAMILTONIAN
CIRCUIT

CLIQUE

INDEPENDENT
SET

GRAPH
3-COLOR

PLANAR
3-COLOR

EXACT
COVER

TSP

SUBSET-SUM

PARTITION INTEGER
PROGRAMMING

KNAPSACK

Dick Karp (1972)
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The "World’s First" NP-Complete Problem

SAT is NP-complete.  (Cook-Levin, 1960’s)

Idea of proof:

■ By definition, nondeterministic TM can solve 
problem in NP in polynomial time.

■ Polynomial-size Boolean formula can describe 
(nondeterministic) TM.

■ Given any problem in NP, establish a 
correspondence with some instance of SAT.

■ SAT solution gives simulation of TM solving 
the corresponding problem.

■ IF SAT can be solved in polynomial time, then 
so can any problem in NP (e.g., TSP).

Stephen Cook
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Coping With NP-Completeness

Hope that worst case doesn’t occur. 

■ Complexity theory deals with worst case behavior.  The instance(s) 
you want to solve may be "easy."

– TSP where all points are on a line or circle
– 13,509 US city TSP problem solved

(Cook et. al., 1998)
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Coping With NP-Completeness

Hope that worst case doesn’t occur. 

Change the problem.

■ Develop a heuristic, and hope it produces a good solution.
– TSP assignment.

■ Design an approximation algorithm: algorithm that is guaranteed 
to find a high-quality solution in polynomial time.

– active area of research, but not always possible!
– Euclidean TSP tour within 1% of optimal

Sanjeev Arora (1997)
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Coping With NP-Completeness

Hope that worst case doesn’t occur. 

Change the problem.

Exploit intractability.

Keep trying to prove P = NP.
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Summary

Many fundamental problems are NP-complete.

■ TSP, CIRCUIT-SAT, 3-COLOR.

Theory says we probably won’t be able to design efficient algorithms 
for NP-complete problems.

■ You will likely run into these problems in your scientific life.

■ If you know about NP-completeness, you can identify them and 
avoid wasting time.

Lecture T6:  Extra Slides
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Some Hard Problems

SCHEDULE

■ A set of jobs of varying length need to be processed on two 
identical machines before a certain deadline T.  Can the jobs be
arranged so that the deadline is met?

A D

F

B C

GE

Machine 2

Machine 1

Time T0

length of job F
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Machine 2

Machine 1

Some Hard Problems

SCHEDULE

■ A set of jobs of varying length need to be processed on two 
identical machines before a certain deadline T.  Can the jobs be
arranged so that the deadline is met?

A D F

B C E

Time T0

G

Yes.

A D

F

B C

GE

length of job F
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Some Hard Problems

CLIQUE

■ Given N people and their pairwise relationships.  Is there a group 
of S people such that every pair in the group knows each other.

ba c

h g

f

e

d

i

j

k

Friendship Graph
People: a, b, c, d, e, . . ., k

Friendships: (a, e), (a, f), (a, g), . . ., (h, k)

Clique size: S = 4?
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Some Hard Problems

CLIQUE

■ Given N people and their pairwise relationships.  Is there a group 
of S people such that every pair in the group knows each other.

ba c

h g

f

e

d

i

j

k

Friendship Graph
People: a, b, c, d, e, . . ., k

Friendships: (a, e), (a, f), (a, g), . . ., (h, k)

Clique size: S = 4?

Yes - {b, d, i, h} is a witness.


