Lecture R1: Course Review

What You've Learned (A Lot!)

Programming.
. Basic skills are universal (C, Java, PostScript, Maple, Perl, TeX).
. Key abstractions:

- structured programming: for, while, if, function call

- data structures: array, struct, linked list, stack, queue, tree

- pointer, recursion, divide-and-conquer

. Can address important problems without relying on pre-packaged
solutions.

COS 217 COS 226

What You've Learned (A Lot!)

Programming.
The TOY machine.
. Bridge between C language and hardware.
. Machine language programming (0’'s and 1's).
. von Neumann architecture. COS 306
. Building a TOY machine from logic gates.

BTl s I O G e g A T T e m

What You've Learned (A Lot!)

Programming.
The TOY machine.
Theory of computation.

. Use formal language to model computation.

. Use abstract machines to strip away inessential details.
. Computability: all machines have limitations.

. Church-Turing thesis: Turing machine is all-powerful.

. Algorithms: polynomial vs. exponential.

. Problem classes: P, NP, NP-complete.

S8 |

COS 423 COS 487




What Is Computer Science?

What is computer science?
1. The science of manipulation "information."
2. Designing and building systems that do (1).

Why we learn CS.
. Appreciate underlying principles.
Understand fundamental limitations.

An example: +eetret+FBSR—FS¥-mechire—p» ?77?
How to make a simple machine.
. What can we do with it? What can’t do with it?
How fast can we do it?
Science behind it.

Course Themes

Layers of Abstraction:
Building a computer program.
- divide program into small independent functions
- ADT
Building a computer.
—transistors 0 gates O maj,odd O adder O ALU
- ALU, register file, decoder, multiplexer 0O TOY machine
Formal languages.
- abstraction to describe computation
Models of computation.
- abstract machines, complexity classes

Course Themes

Tradeoffs:
. Time vs. space.
- arrays, linked lists, BST
Program generality vs. simplicity.
. Correct answer vs. time.
- TSP brute force vs. heuristics
- NP-completeness
New machine vs. new idea.
- machine cost $$$ and makes "everything" run incrementally faster
- new ideas can enable new research and technology
Expressiveness of language vs. ability to compile.
- English is expressive: difficult for a computer to parse
- C uses context-free grammar: easy to parse

Course Themes

Self reference:
Recursion.
- function that calls itself
Linked list, tree.
- self-referential data structures
Fractal.
- Mandelbrot set, H-tree pattern
Sequential circuit.
- feedback loop

. von Neumann architecture.

- data and instruction stored in
same main memory

Universal Turing machine.

- can simulate any machine including itself

Undecidable problem.

- key step in Halting proof was feeding one program itself as input

M.C. Escher

© Cordon Art, Baarn, the Netherlands




Course Themes

Reuse (don't reinvent the wheel):
Loop.
- let computer repeat code
Program.
- borrow similar program as template
Function.
-reuse code
. Circuit.
- reuse primitive components
Divide-and-conquer.
- reuse ideas recursively
. ADT.
- build general purpose libraries

What To Do When You Face a New Problem?

What primitive objects are important?
Numbers, files, pictures, text, programs, strings, matrices?

. Could always do it in C.
Does another tool allow direct manipulation.

How long will it take me to do this task?
Depends on what tool | use.

Have | done something like this before?
If so, maybe | should use the same tool.
Maybe | have some code laying around.
Does it still work?

Will | be doing something like this again?
If not, quick hack may be OK.

What To Do When You Face a New Problem?

Will | be doing something like this *frequently*?
Is it worthwhile to learn a new tool?
Is it worthwhile to *create* a new tool?

Has *someone else* done something like this?
May be some code laying around to reuse.

Will someone else be doing something like this in the future?
Document the code?
Make it portable?

"Whenever we think a problem is simple, it turns out to be
complicated. Fortunately, whenever we think it to be
complicated, it turns out to be simple."

What To Do When You Face a New Problem?

Will | be doing something like this *frequently*?
Is it worthwhile to learn a new tool?
Is it worthwhile to *create* a new tool?

Has *someone else* done something like this?
May be some code laying around to reuse.

Will someone else be doing something like this in the future?
Document the code?
Make it portable?

No easy answers: need to consider
alternatives with an open mind.




Final Exam

Final.

. 8:30am, Friday, January 19.
. A02 McDonnell Hall.
Reading period office hours.

. To be posted on Web.

Rules.
. No computational devices.
. Closed note, closed book.

. Exception: 8.5 x 11 page (both sides) in your own handwriting.

Tips for Preparing for the Final

Final is comprehensive.

Material since second midterm will be covered in greater depth.
. Theory.

- Abstract machines: examples and applying theorems.

- Computability: basic ideas and significance.

- Analysis of algorithms (given code, predict how long it will take
to solve problem)

- P, NP, NP-complete, P = NP: basic ideas and definitions
. Systems.

- basic ideas and definitions

- understand examples

Be sure you understand questions you got wrong on previous exams.
. You just might get a similar problem...




