
Lecture R1: Course Review

What You’ve Learned (A Lot!)

Programming.

■ Basic skills are universal (C, Java, PostScript, Maple, Perl, TeX).

■ Key abstractions:
– structured programming: for, while, if, function call
– data structures: array, struct, linked list, stack, queue, tree
– pointer, recursion, divide-and-conquer

■ Can address important problems without relying on pre-packaged
solutions.

COS 217 COS 226

What You’ve Learned (A Lot!)

Programming.
The TOY machine.

■ Bridge between C language and hardware.

■ Machine language programming (0’s and 1’s).

■ von Neumann architecture.

■ Building a TOY machine from logic gates.

COS 306

What You’ve Learned (A Lot!)

Programming.
The TOY machine.
Theory of computation.

■ Use formal language to model computation.

■ Use abstract machines to strip away inessential details.

■ Computability: all machines have limitations.

■ Church-Turing thesis: Turing machine is all-powerful.

■ Algorithms: polynomial vs. exponential.

■ Problem classes: P, NP, NP-complete.

COS 423 COS 487

What Is Computer Science?

What is computer science?

1. The science of manipulation "information."

2. Designing and building systems that do (1).

Why we learn CS.
■ Appreciate underlying principles.
■ Understand fundamental limitations.

An example: Lecture I1: LFBSR TOY machine ????
■ How to make a simple machine.
■ What can we do with it? What can’t do with it?
■ How fast can we do it?
■ Science behind it.

Course Themes

Layers of Abstraction:

■ Building a computer program.
– divide program into small independent functions
– ADT

■ Building a computer.

– transistors ⇒ gates ⇒ maj, odd ⇒ adder ⇒ ALU
– ALU, register file, decoder, multiplexer ⇒ TOY machine

■ Formal languages.
– abstraction to describe computation

■ Models of computation.
– abstract machines, complexity classes

Course Themes

Tradeoffs:

■ Time vs. space.
– arrays, linked lists, BST

■ Program generality vs. simplicity.

■ Correct answer vs. time.
– TSP brute force vs. heuristics
– NP-completeness

■ New machine vs. new idea.
– machine cost $$$ and makes "everything" run incrementally faster
– new ideas can enable new research and technology

■ Expressiveness of language vs. ability to compile.
– English is expressive: difficult for a computer to parse
– C uses context-free grammar: easy to parse

Course Themes

Self reference:
■ Recursion.

– function that calls itself
■ Linked list, tree.

– self-referential data structures
■ Fractal.

– Mandelbrot set, H-tree pattern
■ Sequential circuit.

– feedback loop
■ von Neumann architecture.

– data and instruction stored in
same main memory

■ Universal Turing machine.
– can simulate any machine including itself

■ Undecidable problem.
– key step in Halting proof was feeding one program itself as input

M.C. Escher
© Cordon Art, Baarn, the Netherlands

Course Themes

Reuse (don’t reinvent the wheel):

■ Loop.
– let computer repeat code

■ Program.
– borrow similar program as template

■ Function.
– reuse code

■ Circuit.
– reuse primitive components

■ Divide-and-conquer.
– reuse ideas recursively

■ ADT.
– build general purpose libraries

What To Do When You Face a New Problem?

What primitive objects are important?

■ Numbers, files, pictures, text, programs, strings, matrices?

■ Could always do it in C.

■ Does another tool allow direct manipulation.

How long will it take me to do this task?

■ Depends on what tool I use.

Have I done something like this before?

■ If so, maybe I should use the same tool.

■ Maybe I have some code laying around.

■ Does it still work?

Will I be doing something like this again?

■ If not, quick hack may be OK.

What To Do When You Face a New Problem?

Will I be doing something like this *frequently*?

■ Is it worthwhile to learn a new tool?

■ Is it worthwhile to *create* a new tool?

Has *someone else* done something like this?

■ May be some code laying around to reuse.

Will someone else be doing something like this in the future?

■ Document the code?

■ Make it portable?

"Whenever we think a problem is simple, it turns out to be
complicated. Fortunately, whenever we think it to be
complicated, it turns out to be simple."

What To Do When You Face a New Problem?

Will I be doing something like this *frequently*?

■ Is it worthwhile to learn a new tool?

■ Is it worthwhile to *create* a new tool?

Has *someone else* done something like this?

■ May be some code laying around to reuse.

Will someone else be doing something like this in the future?

■ Document the code?

■ Make it portable?

No easy answers: need to consider
alternatives with an open mind.

Final Exam

Final.
■ 8:30am, Friday, January 19.
■ A02 McDonnell Hall.

Reading period office hours.
■ To be posted on Web.

Rules.
■ No computational devices.
■ Closed note, closed book.
■ Exception: 8.5 x 11 page (both sides) in your own handwriting.

Tips for Preparing for the Final

Final is comprehensive.

Material since second midterm will be covered in greater depth.
■ Theory.

– Abstract machines: examples and applying theorems.
– Computability: basic ideas and significance.
– Analysis of algorithms (given code, predict how long it will take

to solve problem)
– P, NP, NP-complete, P = NP: basic ideas and definitions

■ Systems.
– basic ideas and definitions
– understand examples

Be sure you understand questions you got wrong on previous exams.
■ You just might get a similar problem…

