CS 126 Lecture A5:

Computer Architecture

Outline

¢ Introduction

* Some basics

* Single-cycle TOY design
* Multicycle TOY design

* Conclusions

What We Have

[EELA A ETERER]

Addar | i ol R |

Multiplenar [dacsder] __r"ﬁm‘j - -“L_Ilﬁ:@
™

TTTI0] TITTITI !
Flig-flap -IE_

Rugister {h uw.ml

Memary el

Marmary

o |

Pa— - L__::J

CS126 13-1

CS126

13-2 Randy Wang

What We Want to Do

repeat
fetch instruction;
update PC;
decode instruction;
execute instruction;
until halt signal

* Remember the TOY simulator written in C?
* Now it's time to use the components we have to impler

this loop inhardware!

nent

CS126 13-3

Outline

* Introduetion

* Some basics

* Single-cycle TOY design
* Multicycle TOY design

* Conclusions

Single Cycle vs. Multicycle Design
repeat

fetch instruction;

update PC;

decode instruction;

execute instruction;
until halt signal

CS126 13-4 Randy Wang

cycle time rising edge fallin g edge
* Single cycle design: each iteration is completed within
clock cycle, long cycles, simple
* Multi-cycle design: each iteration is broken down into

multiple clock cycles: short cycles, more complex
* More tradeoffs later

one

Datapath and Control: Definition by Example

CS126 13-5 Randy Wang

WriteEnabIel*CIl rcoTmTT T
v : Control Circuit :
1 1
- & [IEEAEE
= O AN m
Tl : 23
® T EEE
Q0O
2 A £EE
* «Q * WriteEnabIe3*Cl| ===
N
Select
WriteEnabIe%Cll

* Blue: datapathRed: control signals

* Control circuit decides how to s@electand whether to
enableWriteEnable3

*\When clock ticks
- One of Regl or Reg2 gets copied to Reg®rifteEnable3s on
- Nothing gets copied to Reg3\friteEnable3s off

CS126 13-6 Randy Wang

The Big Picture

Processor

Input

Memory

Datapath Output

* The five classic components of a computer

CS126 13-7 Randy Wang

Steps Towards Designing a Processor

* Analyze instruction set architecture (ISA) and understz
datapath requirements

* Select set of datapath components and establish cloch
methodology

* Assemble datapath to meet ISA requirements

* Analyze how to implement each instruction to determir
the setting of various control signals

* Assemble the control logic

CS126 13-8 Randy Wang

What We Have (cont.): TOY Register File

r0 rl r2
reg
bu30<+> reg +>busl
16 16
rego
+>busz
16

write ——p»]

Gock—=

® 8 general purpose registers

® 2 16-bit output busses, 1 16-bit input bus

®r1, r2 (3-bit numbers) specifies which registers go on bus1, 2

® r0 (3-bit) specifies which registers to receive input data when wri

and

King

e

enabled at clock pulse; when not write-enabled, the named register’s

value appears on bus 0

CS126 13-10 Randy Wang

Review: Register File (From Last Lecture)

address {Iogzn
input7‘> rego
k

reg
write — reg,

+> output
k

Clock — regn.1

* Register file of k-bit words

* One address port, so can't read and write in the same
cycle

CS126 13-9 Randy Wang

What We Have (cont.): TOY ALU

16

16
ALUctrl

*We have learned about an adder. Generalize it to an A

* Two 16-bit inputs, one 16-bit output

* A 3-bit control specifies which arithmetic or logic
operation to perform (+ - * A & >> <<)

CS126 13-11 Randy Wang

clock

LU.

Outline

* Introduction

Some-basics

* Single-cycle TOY design

- Datapath design
- Control design

* Multicycle TOY design

e Conclusions

TOY Datapath Components

repeat
fetch instruction;
perform arithmetic operation;
access memory if necessary;
write back to register if necessary;
until halt signal

CS126 13-12 Randy Wang

* Refine the simulator code to be more specific

* Each of these four lines will be handled by a piece of
hardware
- Instruction fetch
- Arithmetic (execution)
- Memory
- Write back

* We will assemble them one at a time, and assemble al
together at the end

e Caveat: I'm leaving out a few instructions as exercises

TOY Arithmetic (Execution) Data Path

CS126 13-13 Randy Wang

RegWr 0 rl r2

bus0)
+ 8x16-hit
16 Registers
Cl

—>

Blue: datapathRed: control signals

(Part of) Implementation of TOY instruction:

ro=rl+r2

r0, r1, r2 control signals come straight from instruction, more on
control later

Clock controls when write back occurs

Reads behave as combinational logic: result valid after delay

TOY Instruction Fetch Unit

[//
Data 16
Instruction Instruction Register (IR) Y
Memory bpcode (15:19) ro (11:8) 11 (7:4) 2 (3:0) |
Addr "
AS Imm8

Imm8

from ALU

CS126 13-14 Randy Wang

* Key question: which instruction to fetch

- If jump, then fetch the jump target (which is in instruction itself)
- Otherwise, fetch the next instruction

CS126 13-15 Randy Wang

four

Timing Demo: Putting Instruction Fetch TOY Memory Datapath
and Add Togethel’ for store instruction
(opcode A) I cl for Ioead igstruction
* Memory address can from e P 9 (opcode 9)
\L- c?me frcl)m og_e OtfhtWJregister —| Daa (g
aces: Imm8in the | S
Ok | I . ﬁlstruction, or result | file bus 0416Dawl | Memory 1=
i) | g](‘jéé[ééfﬁgr)mdexed Address
P il Sulue ; : Marm ol ',l: 16
g r————i Iiesrnaton Memory Access I ims : AddrSel
R RE, RS Op U o] value f L e ki from ¥y
i--- =l | lalay dhrongh Uontol Logps | ALU A
LLlits LA valug 1 S ol tput 1
i A I:'_l ! i T outpu 16
WIE Chl Waue 4 .."' B vl : " | write result back
- | :1 - —#d Foguier File Access Tisg to register file
il = LAl Wl 1
|
— * For instructions that load from or write to memory
Reghaer Wirlle .
Civont Hars * Key question: where does address come from?
- From instruction itself (exampled = mem[3D])
- From ALU (exampler0 = mem[r1+r2])
CS126 13-16 Randy Wang CS126 13-17 Randy Wang

TOY W”te BaCk Datapath Putt'ng It A” Togethel’ (Complete Single Cycle TOY Datapath)

| 7/
Ifcggrging Instr Instruction Reg]Tger (IR) Y
memory |nh;:umc;iron bpcode (15:14) r0 (11:8) 11 (7:4) 2 (3:0) |
\é\lhittcan b_etwri]g_tler)) from 16, y /
ack 1o regis er_le. ALU Sign extension to Addr Imm8
1; result O?ALUJ output 16 ge negative number A cond] 5 cl
2) result of loading —\—\ bt 8 SN
memory; or I [Comp] emwr g
3) Imm3 from g 5 & Comp 16“” Ml paa B
instruction — \—Dateg | Memory =
Q Regwr 0 T r Address
3 3 3 ALUctrl 8 16
to { t ; 3 rSe
register * bust 18 Addrsel
file bus) Bx16-bit A
; . . . o Registers
* Key question: what to write back to register file? One of s
three possibilities, examples: [/
- rg =rl+ ré 5 - 2 =
- r0 = mem ¢ -
0=3A [30] * Example TOY instruction 1A:9A45 (r2 = mem][r4+r5])
-10=

e Caveat: I'm leaving out a couple instructions as exercises

CS126 13-18 Randy Wang CS126 13-19 Randy Wang

Abstract View of Relationship Between
Single Cycle TOY Datapath and Control

Instruction
opcode (15:12) r0 (11:8) | r1(7:4) | r2(3:0) |

Control

Datapath

® The flow of data in the datapath commanded by control signals
® Control signals issued by the control unit

® Control unit gets its input from the current instruction and conditig
codes from the datapath

® Control unit is nothing but a big combinational circuit

CS126 13-20 Randy Wang

Outline

* Introduction

- Some-basies

~ Single-cycle TOY datapath design
« Sinal I L desian
* Multicycle TOY design

e Conclusions

CS126 13-22 Randy Wang

Implementing Single Cycle TOY Control

opcode(4bits) high bit of r0
for indexed addressing)

| 7bitsof 'l' i'l‘ ‘l’ - 'I‘ B uéo'na """ 1

l input 1

1 |

| decoder l

1 |

127=128 bits eo o .

(of output 4\: ReqWr
: L 4 eee / : 9

1 : 1

: *

!]) — WBselg
. [X N J i / |

® Meaning of a decoder output that is 1: one particular instruction i
executingand certain conditions are met

® Meaning of each OR-gate: turn on this control signal if any one o
“these things” happen

CS126 13-21 Randy Wang

Problems with Single-Cycle
Implementation

*Long cycle time
- Not all instructions are equal, some longer, some shorter
- Memory accesses can be a lot longer
- The slowest instruction determines cycle time
- The processor sits idle for faster instructions

* Waste of chip area, for example:
- Need an adder to compute PC+=4 in addition to the ALU

- Could in theory eliminate the adder and borrow ALU when
not needed

- But in a single cycle, we can’t tell when ALU is done

CS126 13-23 Randy Wang

it's

Multicycle Design

repeat
fetch instruction;
decode instruction;
execute instruction;
access memory if necessary;
write back to register if necessary;
until halt signal

* Multicycle design
- Look at our TOY simulator again
- Carefully break down each instruction into these roughly equal
stages
- Use one (short) clock cycle to execute each stage
* Advantages
- Shorter instructions can just skip unnecessary cycles, more effi
in time
- Can borrow ALU to increment PC earlier: more efficient in chip

cient

area

CS126 13-24 Randy Wang

“Clocking” Values from One Stage to Next

WriteEnabIel*Ci :- Eo_mr_o |_C;c;it_ - .i
Y \ IL_ o _JI
aatiug IRAL,
"~ Z v £ 399
S 2 5 2EE
8 G
5 A £ EE
Lc!:) #K WriteEnabIe3*CI| ===
Vi\ Select
WriteEnabIe#CIl
stage n § stage n+1

* (We have seen this slide before)

* The trick is to figure out how and when to set the control

signals!

CS126 13-26 Randy Wang

Multicycle TOY Datapath

uolonnsuj

eied N
y

® Divide datapath up into 5 piecesd boxesanalogous to the simulat
code on previous slide: fetch, decode, execute, memory, write-bd

® Introduce temporary registetslife boxeyto hold intermediate
answers

® During each clock cycle, previous intermediate values are “clockg
into next stage, where the next intermeddiate value is calculated

CS126 13-25 Randy Wang

How to Modify Control

g 0 10 0 1w 1w n on un

Cnir

1]

Feich Decode Exec Mem WE Feach Decode Exec TUH

* Control depends on both instruction and time

* Use a counter to keep track of time (which stage the
instruction is in)

* Will use counter to help determine control

CS126 13-27 Randy Wang

Dr
ck)

od”

What's New In This Picture?

Clp Caumer]

Control

Datapath

* Counter output becomes part of control input

CS126 13-28 Randy Wang

Steps Towards Designing a Processor

* Analyze instruction set architecture (ISA) and understz
datapath requirements

* Select set of datapath components and establish cloch
methodology

* Assemble datapath to meet ISA requirements

* Analyze how to implement each instruction to determine

the setting of various control signals
* Assemble the control logic

CS126 13-30 Randy Wang

Outline

* Introduction

- Some-basies

~ Single-cycle TOY datapath design
« Sinal I L desian
« Multievel losi

e Conclusions

CS126 13-29 Randy Wang

and

King

Where’s the Science?
Understanding Tradeoffs

*We saw a deceptively trivial tradeoff today: clocking
methodology

- Single cycle architecture vs. multicycle architecture

- Multicycle sounds obviously superior, right?

- Extra temporary registers and extra control logic of latter
+ Introduce time overhead
+ Introduce chip area overhead
+ Introduce extra complexity, cost, time-to-market,

- The question to a computer architect is whether this trade

worth it
* More complex tradeoffs at each step of the prev. slide

¢ Nice to hide all this under the hood of an ISA

off is

CS126 13-31 Randy Wang

What We Have Learned Today

* Concepts:
- Datapath vs. control
- Single-cycle vs. multicycle designs

* More components: TOY register file and ALU
* Single-cycle design

- How signals propagate in different parts of the datapath in

general

- How to implement control signals in general. Where do in
come from?

* Multicycle design
- Main general modifications made to datapath and control

¢ | Don't expect people to memorize all the details

puts

CS126 13-32 Randy Wang

Forces Influencing Computer Architecture

Programming
Languages

.H

Applicalions .r’/
‘-‘." Computar

Architecturs

/

Operating
Syshems

Technology

g

History

CS126 13-34 Randy Wang

Computer Architecture

| Compiler| | Firmware

. Instruction Set
Architecturs

P | Instr. Set Proc. | VO system|
Datapath & Control |

| Digital Design |

L gt

* Coordination of many levels of abstraction
* Under a rapidly changing set of forces
* Design, measurement, and evaluation

CS126 13-33 Randy Wang

Dramatic Technology Change

* Technology

- Processorlogic capacity: +30% / yr; clock rate: +20% / yr;
overall performance: ~+60% / yr!

- Memory and disk capacity: ~+60% / yr

* Numbers, though impressive, are boring. What's really
exciting is revolutionary leaps in applications!

* Quantitative improvement and revolutionary leaps
interleave as technology advances
- ~1985:Single-chip (32-bit) processorsandsingle-board
computersemerged, led to revolutions in all aspects of
computer science!
- Conjecture: ~2002: Emergence of powegilale-chip
systems what will be its implication?!

CS126 13-35 Randy Wang

