Outline

e | ntroductions

* History

* Genera mechanisms
* Process management
* Memory management
* File systems

* Conclusions

CS126 23-1 Randy Wang

CS 126 Lecture S2:
Operating Systems

OS as Gover nment
e Everyone learnsto heteit, bu youwill missit dearly if it's
not there
* Makes lives easy: virtualizing resour ces: promises
everyone illusions of
- separate dedicated CPUs (using asingle CPU)
- unlimited amourt of memory (using limited physicd memory)
- directories and files (using disk blocks)
* Makes lives easy: providing standard ser vices:
- development environment
- standard libraries
- window systems
* Makes livesfair: arbitrate competing resource demands
* Makes lives safer: prevent accidental or malicious
damage/intrusion
* A goodway of understanding OSisto look at the history of
where they come from... (We keep going back to the future!)

CS126 23-3 Randy Wang

Why Learn About OS

*Beaninformed citizen in the age of hype, controversies,
and lawyer talks

* Lean something abou abig part of your daily computing
life

* Gain an appredation d “the big picture’
- In terms of the crucial role of technology advance, and
- In terms of synthesis of many areas of computer science:

hardware, algorithms, language, and ...

* Gain someinsight into how to put together arguably one of

the most challenging softwar es

CS126 23-2 Randy Wang

Phase 0: User at Console

* How things work
- One TOY machine for CS126, what do we do?
- No OS, just a sign-up sheet for reservations!
- Each user has complete control of machine

- Soon added device libraries, compilers, assemblers for
convenience

* Advantages
- Interactivel
- No one can hurt anyone else

* Disadvantages
- Reservations not accurate, leads to inefficiency

- Loading/unloading tapes and cards takes forever and leaves
the machine idle

CS126 23-5 Randy Wang

Outline

- Introductions

e History

* Genera mechanisms
* Process management
* Memory management
* File systems

* Conclusions

CS126 23-4 Randy Wang

Phase 2: Interactive Time-Sharing
(Cheap Har dware, Expensive Humans)

* How things work
- Multiple cheap terminals for multiple users per single machine

- OS keeps multiple programs active at the same time and
switches among them rapidly to provide theillusion of one
machine per user

* Advantage: interactivity, sharing (collaboration)

* Problems
- Must provide reasonabl e response time (hard sometimes)

- Must provide human friendly interfaces. command shell,
hierarchical name structure for file systems, etc. (solvable)

- Higher degree of multiprogramming places heavier demand on
protection mechanism (solvable but hard)

CS126 23-7 Randy Wang

Phase 1. Batch Processing
(Expensive Hardware, Cheap Humans)

® How thingswork
- Sort jobs and batch those with simil ar needs to reduce unnecessary setup
time
- A resident monitor provides “automatic job sequencing”: it interprets
“control cards’ to automatically run abunch of programs without human
intervention
® Advantage
- Good utilization of machine, (jargon: high throughput: jobs per seand)
® Problems
- Lossof interactivity (unsolvable)
- Onejob can screw up other jobs, need praotedion (solvable)

CS126 23-6 Randy Wang

Technology Advances Determine OS

1981 1999 Factor

MIPS 1 1000 1,000
$MIPS $100K $5 20,000
DRAM Capacity 128KB 256MB 2,000
Disk Capacity 10MB 50GB 5,000
Network B/W 9600b/s 155M b/s 15,000

Address Bits 16 64 4

User /M achine 10s <=1 <01

CS126 23-9 Randy Wang

Phase 3: Personal Computing
(Very Cheap Hardware, Very Expensive Humans)

* How things work
- One macdhine per person, now several machines per person
- Initially, OS goes back to “square 1” (like those of Phase 0)
- Later added back multiprogramming and memory protedion
* Advantages
- Better response time
- Protection becomes alittle easier
* Problems
- How do yau share information? (sill not solved)
* What's next? Networked ubiquitous computing?
- Much of what we will talk abou is motivated bythe Phase 0-3
historical developments.
- Isthe next phase fundamentally different? What kind of OS do
we need then?

CS126 23-8 Randy Wang

Dual-M ode Operation

Application

User Mode Standard Library

Kernel Mode Operating System

* The madine has two modes of operation: user mode and
kernel mode (also cdl ed monitor mode, supervisor mode,
system mode, privileged mode)

* Divide dl instructionsinto two categories: ungrivil eged
and privileged instructions

* Users can't execute privil eged instructions

* Users must ask the OS to doit onits behalf: system calls

* The OS gains control upona system cdl, switchesto
kernel mode, performs srvice, switches back to user
mode, and gves control back to user

CS126 23-11 Randy Wang

Outline

~ Introductions

* History

* General mechanisms
* Process management
* Memory management
* File systems

* Conclusions

CS126 23-10 Randy Wang

Interrupts (cont.)

user program A

operating user program B
system

interrupt or SVC

executingl—/\
T

|
- idle

s

‘ save registers ‘

. PS idle

[reload registers ‘ P

. executin
interrupt or SVC g
/\ s, £
] save registers | :
- \
= idle

[reload registers ‘

cxccu[ingI ‘_/

Interrupt-Driven Operation

* Everything the OS does is interrupt-driven

* Aninterrupt stops the execution dead initstrack, control is
transferred to the OS

* The OS saves the current execution context in memory.
These include the PC, the registers, and other stuff (later)

* The OS figures out what caused the interrupt

* Executes a piece of code (interrupt handler) to handle this
particular type of interrupt

* |oads some execution context (possibly the one saved
before the interrupt, or possibly some other saved one) and
resumes execution

CS126 23-12 Randy Wang

Close I nteraction Between
Architectureand OS

* The TOY architecture, asit is, is nat sufficient to suppat

even aminimum OS

* Dual-mode operation and interrupts are agoodexampl e of
how architects and OS writers must work together to buld

aworking “system”

* We will seemore examples of this dialogue

CS126

23-15 Randy Wang

Interrupt-Driven Operation (cont.)

* Everything the OS does is interrupt-driven

* System call: when user asks srvice from OS
* When a device needs attention

* (Periodic) timer interrupts

* Program errors or “abnarmal condtions’, such asillegal
instructions or attempts of referencingill egal memory
addresses

* More exampleswhich we will seelater...

CS126 23-14 Randy Wang

Outline

* Process management
- A processis arunning program

- There are many of them
- How do we create the illusion that each hasits own CPU?

* Memory management
* File systems
¢ Conclusions

What Next?

e What next?
- Process management: avirtual CPU for every user, and
indeed, every program
- Memory management: infinite and safe memory for every
program
- File system: make files and directories out of disk blocks
* What features are we shooting for for each of these?
- Higher level (nicer) abstractions
- Fairness
- Protection
- Sharing
* What common str ategies do we employ?
- Chop up resources into small pieces and allocate them at this
fine-grain level: time quantum, memory pages, disk blocks
- Introduce levels of indirection: users use logical nameswhich
are trandated into physical names
- Use past history to predict future behavior for optimizations

Context Switches

CS126 23-17 Randy Wang CS126 23-16 Randy Wang
user program A operating user program B
system

interrupt or SVC

executingi /—\
IR e

‘ save registers |

‘ . S dle

[reload registers I :

interrupt or SVC

/_

] save registers |

|
> idle ;
' executing

-,

. D > idle

s [reload registers ‘

cxccutingI

LifeCycleof a Process

ready

]'Ul'lﬂlllU

< halted

W(l]l]]’lé._

* Running: instructions are being executed

* Waiting: the processis waiting for some event to occur
(such asan I/O completion)

* Ready: the processis waiting to be assigned to a processor

CS126 23-18 Randy Wang

First-Come-Fir st-Serve vs. Shortest-Job-Fir st
process 1 process 2 3m Em::c”“ process 5
4
10 39 42 49 61
;’,m process 4 | process 1 process 5 process 2
3 10 20 32 61

* Sum of running time of all processes are the same for two strategies

*FCFS

- Average wait time of processes. (0+10+39+42+49)/5 = 28

- What’swrong short processes getting stuck behind long ores
* SIF

- Average wait time of processes. (0+3+10+20+32)/5 =13

- Provably optimal!

- Problem: we can't predict how long ajob will take
* What happens when yourun an infinite loog?

Process Scheduling

* We have awhale burnch of processes that are ready to run
* Which ore dowe run rext?
* The answer depends onwhat you're trying to ogtimize for

* In the foll owing discussion, suppcse
- We are interested in minimizing aver age wait time of eacd,
- and we have the following processes

Process Burst Tinme
1 10
2 29
3
4 7
5 12
CS126 23-20 Randy Wang

Outline

* Memory management
* File systems
e Conclusions

CS126 23-23 Randy Wang

Round-Robin Scheduling

cess
5

rocess
P 4 process 5 process 2 process 2

3

process 1 process 2

process

S| pro

61

LN
L
(e~]

10 20 23 30 40

* Divide uptime into guantums (10 in this case)
* Timer set to interrupt at the end o each quantum
* Two things can happen duing a quantum
- The processfinishes before the timer goes off, OS picks someone else

- The processdoesn’'t finish bythe end of the quantum, OS suspends this process
and gck someone dse

°® Average wait time of processesin this case: (0+32+20+23+40)/5 = 23, thisisin
between FCFSand SIF

* Infinite loops are not a problem!
* Quantum length is an important consideration for performance

Virtual vs. Physical Memory Add
logical physical
address address

I €SSES

page table

physical
memory

TOY Memory Problems

* Problem 1:
- Can’t run two instances of the same program simultaneously!
- Why? Consider the instruction: men{ 0x30] <-r 1
- Two people modify the same memory location at the same
time
* Problem 2:

- How do yau make sure other people dor't accidentally or
maliciously change or snogp your memory?

* Problem 3:
- Can't aacess more than 25 words of memory

* There are many hads aroundthese and many other
memory management problems, but it turnsout that virtual
memory provides a ammon elegant solution to all of them

CS126 23-24 Randy Wang

Paging

granularity istoo much trouble
* So only remap at page granularity:

- Each trangdlation involves two steps:

physical page number and the offset

* Basic idea: allowing remapping of memory at word

- Divide up memory into blocks that are called pages
- Each virtual page can be placed in any physical memory frame

+ Decide which physical frame holds the logical page
+ Decide where the address is inside the page (the offset)
+ The physical addressisformed by gluing together the

CS126 23-27 Randy Wang

Basic |dea Behind Virtual Memory
*Basicidea
- Programs dori't (and can’t) name physical memory
addresses.
- Instead, they use virtual addresses: each process hasits own
memory
- Each virtual address must be translated to physical address
before the memory operation can be carried out
* Why deoes this fix our problems? Consider nen{ 0x30] <-r 1
- We can run two instances of the same program, because 0x30
isonly alogicd name that can be translated to different
physical locations, and each process has its own trans. table
- One person can't hurt another because he can’t seeor use other
people’s page table (he can’t touch athers' 0x30)
- We can run program that uses more physicd memory than we
have because we @n name a huge anount of virtual memory,
not all of which fit in physical memory (can name OxF9AB)

CS126 23-26 Randy Wang

Paging to Disk

* |f we can't fit all the virtual memory in physical memory,
we need to temporarily stash some pages on dsk

* To optimi ze performance, we need to decide which oresto
tossout and which oresto keep, thisis called page

replacement
* The provably optimal strategy:

- Replace the page which will not be needed for the longest
periodin the future

- Problem: requires prediction of future, whichisimpaossible
* Many heuristicsused in redl life
- One of the most popular onesis LRU: least recently used

CS126 23-29 Randy Wang

e Paging Example PR
1
2| ¢ physital memory
i i ’ ® Each process has |Es own page table ‘ 4 i
5| f i
6| 8 i k
71 h 1
g1 3 0 5 g m
0| 5] 2
10| k EesEl .
0 8
12 m ol 12
13,0 3| 2
14| 0
15| p
page table 16
logical memory
* 4-byte pages '
° Consider the virtual address 11,,=1011, 70l a
® Chop it into two parts b
- Virtual page number 2,5=10, ¢
- Offset within page 3;5=11, d
* Look up the page table and find that vi p 24{ ¢
2 is stored at physical page 1 b
* The physical addressis 7,0=0111, &

Storage Hierarchies

ey : e Each lower level is
| reglstel_:ij

- slower,
- bigger,
- farther away, and
- cheaper

* Who manages what

/ - registers: compiler

- cache: hardware
- memory: OS
- disk: OS

* The performance of lower

il level isbecoming
magnetic tapes J increasingly important

PR E ATy TS pre

]

Outline

e Filesystems
e Conclusions

CS126 23-30 Randy Wang

Have You Ever Opened Up a Disk Drive?

isk Drive Basics

Bisk Drive N

ng Thin Film Disk

CS126 23-33 Randy Wang

Storage Hierarchy Latency (by Jim Gray)

Andromdeda
10g Tape /Optical 2,000 Years
Rabot
L]
ig 10° Disk 2 Years
i o
&]
Q
O
100 Memory 1.5hr
10 On Board Cache This Campus 10 min
2 On Chip Cache . Nis ROOM
1 Registers My Head 1 min

® And the “universe” is expanding -- farther things are getting farther faster!

CS126 23-32

Randy Wang

L evels of Abstractions

* |nside the disk: things are complicated
* Abstradion exported by the disk to the operating system:

* The abstraction exported by the operating system to the
user: directories and files

* In reality, the abstractionisn’t quite & clean: problem:
disks have norruniform accesstime and we need to worry
abou where things st

an array of blocks, which are alled sedors, 512bytes each

CS126 23-35 Randy Wang

Have You Ever Opened Up a Disk Drive? (cont.)

Read /Write Head

Upper Surface
Platter
Lower Surface ——

Actuator

State-of-art (1999):

* Rotation speed:
10,000 RPM

* Capacity: 50 GB

e Bandwidth:
~20MB/s

* Average latency:
~10ms

* |mprovement:
both capacity and
bandwidth are
increasing at the
rate of about 50%
per year!

Outline

e Conclusions

CS126 23-37 Randy Wang

Unix File System Internals

/ \ name i-number
) 58
. 7
2!
directory foo >
bar 37
_\//
i-number | attributes | pointers
24 | | F»
25 |
4 O N,
271 | | e I
— file blocks

i-node table

CS126 23-36 Randy Wang

Challengeto OS Designers.
Distributed Systems

Some example problems for each of the areas we looked at

* CPU scheduling: it can be proven that optimal scheduling
for multiple CPUs is NP-compl ete!

* Memory management: how to form agiant global memory
to cache, for example, web pages?

* File system: how to gain accessto your files anywhere any
time?

* How to provide security and reliability for all these
resources?

CS126 23-39 Randy Wang

Common Strategies

* Chop up resources into small pieces and alocate them at
thisfine-grain level: time quantum, memory pages, disk
sectors

¢ Introduce levels of indirection: users use logical names
which are translated into physical names: virtual memory
addresses, file system directory names, inode numbers, ...

* Use past history to predict future behavior for
optimizations. CPU scheduling, memory replacement, and
disk block allocation

CS126 23-38 Randy Wang

What Does Java Have To Do with All This?
From NY Times article, May 25. 1998

« ‘“necessary to fundamentally blunt Java momentum” in order
“to protect our core assel, Windows" - Paul Maritz, a Microsoft
group vice president

» “Strategic Objective: kill cross-platform Java by growing the
polluted Java market.” - internal Microsoft planning document

* JVM provides far more than smple portablity

* |t manages resources, provides saurity, and pgrovides
sharing

*Soit’sin effect an OS!

e Intriguing: fundamentally different way of providing
protection: at language level
- Java: s/w based protection based ontype safety of objects
- Virtual memory: h/w protection based onpages of memory
- Can you tell which is better??

A More Fundamental Question: Do We
Need to Reexamine How We M ake OSes

* Much o everythingin OS we looked at isinherited from
the historical development of multiprogramming

* Some predicted that the PC revolution would kill OSes,
didn't happen, we ended up“going back to the future”

* |sthe next wave fundamentally different?
* Or are we doamed to “going beck to the future” again?

CS126 23-41 Randy Wang

CS126 23-40 Randy Wang

Meta-Advice: Stay Broad

* The developmentsin OS are aperfect example of why you
want to stay broad, asthis classis

* Why dorit you just teach me programming?
- Roba programmers never get to define the future
- Roba programmers die a ong with obsolete systems
* Today there is ashortage of 25-yea old engineas, anda

surplus of 45-yea-old ores. Why? How do youmake sure
that you dont become a surplus when youre 45?

CS126 23-42 Randy Wang

