
CS 126 Lecture S2:
Operating Systems

CS126 23-1 Randy Wang

Outline

• Introductions

• History

• General mechanisms

• Process management

• Memory management

• File systems

• Conclusions

CS126 23-2 Randy Wang

Why Learn About OS

• Be an informed citizen in the age of hype, controversies,
and lawyer talks

• Learn something about a big part of your daily computing
li fe

• Gain an appreciation of “ the big picture”
- In terms of the crucial role of technology advance, and
- In terms of synthesis of many areas of computer science:
hardware, algorithms, language, and ...

• Gain some insight into how to put together arguably one of
the most challenging softwares

CS126 23-3 Randy Wang

OS as Government
• Everyone learns to hate it, but you wil l miss it dearly if it’s

not there
• Makes lives easy: virtualizing resources: promises

everyone illusions of
- separate dedicated CPUs (using a single CPU)
- unlimited amount of memory (using limited physical memory)
- directories and files (using disk blocks)

• Makes lives easy: providing standard services:
- development environment
- standard libraries
- window systems

• Makes lives fair: arbitrate competing resource demands
• Makes lives safer: prevent accidental or malicious

damage/intrusion
• A good way of understanding OS is to look at the history of

where they come from... (We keep going back to the future!)

CS126 23-4 Randy Wang

Outline

• Introductions

• History

• General mechanisms

• Process management

• Memory management

• File systems

• Conclusions

CS126 23-5 Randy Wang

Phase 0: User at Console

• How things work
- One TOY machine for CS126, what do we do?
- No OS, just a sign-up sheet for reservations!
- Each user has complete control of machine
- Soon added device libraries, compilers, assemblers for

convenience

• Advantages
- Interactive!
- No one can hurt anyone else

• Disadvantages
- Reservations not accurate, leads to inefficiency
- Loading/unloading tapes and cards takes forever and leaves

the machine idle

CS126 23-6 Randy Wang

Phase 1: Batch Processing
(Expensive Hardware, Cheap Humans)

• How things work
- Sort jobs and batch those with similar needs to reduce unnecessary setup

time
- A resident monitor provides “automatic job sequencing” : it interprets

“control cards” to automatically run a bunch of programs without human
intervention

• Advantage
- Good util ization of machine, (jargon: high throughput: jobs per second)

• Problems
- Loss of interactivity (unsolvable)
- One job can screw up other jobs, need protection (solvable)

CS126 23-7 Randy Wang

Phase 2: Interactive Time-Sharing
(Cheap Hardware, Expensive Humans)

• How things work
- Multiple cheap terminals for multiple users per single machine
- OS keeps multiple programs active at the same time and

switches among them rapidly to provide the illusion of one
machine per user

• Advantage: interactivity, sharing (collaboration)

• Problems
- Must provide reasonable response time (hard sometimes)

- Must provide human friendly interfaces: command shell,
hierarchical name structure for file systems, etc. (solvable)

- Higher degree of multiprogramming places heavier demand on
protection mechanism (solvable but hard)

CS126 23-8 Randy Wang

Phase 3: Personal Computing
(Very Cheap Hardware, Very Expensive Humans)

• How things work
- One machine per person, now several machines per person
- Initially, OS goes back to “square 1” (like those of Phase 0)
- Later added back multiprogramming and memory protection

• Advantages
- Better response time
- Protection becomes a little easier

• Problems
- How do you share information? (sill not solved)

• What’s next? Networked ubiquitous computing?
- Much of what we will talk about is motivated by the Phase 0-3
historical developments.

- Is the next phase fundamentally different? What kind of OS do
we need then?

CS126 23-9 Randy Wang

Technology Advances Determine OS

1981 1999 Factor

MIPS 1 1000 1,000

$/MIPS $100K $5 20,000

DRAM Capacity 128KB 256MB 2,000

Disk Capacity 10MB 50GB 5,000

Network B/W 9600b/s 155Mb/s 15,000

Address Bits 16 64 4

Users/Machine 10s <= 1 < 0.1

CS126 23-10 Randy Wang

Outline

• Introductions

• History

• General mechanisms

• Process management

• Memory management

• File systems

• Conclusions

CS126 23-11 Randy Wang

Dual-Mode Operation

• The machine has two modes of operation: user mode and
kernel mode (also called monitor mode, supervisor mode,
system mode, privileged mode)

• Divide all instructions into two categories: unprivileged
and privileged instructions

• Users can’t execute privileged instructions
• Users must ask the OS to do it on its behalf: system calls
• The OS gains control upon a system call , switches to

kernel mode, performs service, switches back to user
mode, and gives control back to user

Application

Standard Library

Operating System

User Mode

Kernel Mode

CS126 23-12 Randy Wang

Interrupt-Driven Operation

• Everything the OS does is interrupt-driven

• An interrupt stops the execution dead in its track, control is
transferred to the OS

• The OS saves the current execution context in memory.
These include the PC, the registers, and other stuff (later)

• The OS figures out what caused the interrupt

• Executes a piece of code (interrupt handler) to handle this
particular type of interrupt

• Loads some execution context (possibly the one saved
before the interrupt, or possibly some other saved one) and
resumes execution

In
te

rr
up

ts
 (

co
nt

.)

CS126 23-14 Randy Wang

Interrupt-Driven Operation (cont.)

• Everything the OS does is interrupt-driven

• System call: when user asks service from OS

• When a device needs attention

• (Periodic) timer interrupts

• Program errors or “abnormal conditions” , such as il legal
instructions or attempts of referencing ill egal memory
addresses

• More examples which we will see later...

CS126 23-15 Randy Wang

Close Interaction Between
Architecture and OS

• The TOY architecture, as it is, is not sufficient to support
even a minimum OS

• Dual-mode operation and interrupts are a good example of
how architects and OS writers must work together to build
a working “system”

• We will see more examples of this dialogue

CS126 23-16 Randy Wang

What Next?
• What next?

- Process management: a virtual CPU for every user, and
indeed, every program

- Memory management: infinite and safe memory for every
program

- File system: make files and directories out of disk blocks
• What features are we shooting for for each of these?

- Higher level (nicer) abstractions
- Fairness
- Protection
- Sharing

• What common strategies do we employ?
- Chop up resources into small pieces and allocate them at this

fine-grain level: time quantum, memory pages, disk blocks
- Introduce levels of indirection: users use logical names which

are translated into physical names
- Use past history to predict future behavior for optimizations

CS126 23-17 Randy Wang

Outline

• Introductions

• History

• General mechanisms

• Process management
- A process is a running program
- There are many of them
- How do we create the illusion that each has its own CPU?

• Memory management

• File systems

• Conclusions

CS126 23-18 Randy Wang

Life Cycle of a Process

• Running: instructions are being executed

• Waiting: the process is waiting for some event to occur
(such as an I/O completion)

• Ready: the process is waiting to be assigned to a processor

C
on

te
xt

 S
w

it
ch

es

CS126 23-20 Randy Wang

Process Scheduling

• We have a whole bunch of processes that are ready to run

• Which one do we run next?

• The answer depends on what you’re trying to optimize for

• In the following discussion, suppose
- We are interested in minimizing average wait time of each,
- and we have the following processes

Process Burst Time

1 10

2 29

3 3

4 7

5 12

First-Come-First-Serve vs. Shortest-Job-First

• Sum of running time of all processes are the same for two strategies

• FCFS
- Average wait time of processes: (0+10+39+42+49)/5 = 28
- What’s wrong: short processes getting stuck behind long ones

• SJF
- Average wait time of processes: (0+3+10+20+32)/5 = 13
- Provably optimal!
- Problem: we can’t predict how long a job will take

• What happens when you run an infinite loop?

Round-Robin Scheduling

• Divide up time into quantums (10 in this case)

• Timer set to interrupt at the end of each quantum

• Two things can happen during a quantum
- The process finishes before the timer goes off, OS picks someone else
- The process doesn’t finish by the end of the quantum, OS suspends this process
and pick someone else

• Average wait time of processes in this case: (0+32+20+23+40)/5 = 23, this is in
between FCFS and SJF

• Infinite loops are not a problem!

• Quantum length is an important consideration for performanceCS126 23-23 Randy Wang

Outline

• Introductions

• History

• General mechanisms

• Process management

• Memory management

• File systems

• Conclusions

CS126 23-24 Randy Wang

TOY Memory Problems

• Problem 1:
- Can’t run two instances of the same program simultaneously!
- Why? Consider the instruction: mem[0x30]<-r1
- Two people modify the same memory location at the same
time

• Problem 2:
- How do you make sure other people don’t accidentally or
maliciously change or snoop your memory?

• Problem 3:
- Can’t access more than 256 words of memory

• There are many hacks around these and many other
memory management problems, but it turns out that virtual
memory provides a common elegant solution to all of them

Virtual vs. Physical Memory Addresses

CS126 23-26 Randy Wang

Basic Idea Behind Virtual Memory
• Basic idea

- Programs don’t (and can’t) name physical memory
addresses.

- Instead, they use virtual addresses: each process has its own
memory

- Each virtual address must be translated to physical address
before the memory operation can be carried out

• Why does this fix our problems? Consider mem[0x30]<-r1
- We can run two instances of the same program, because 0x30
is only a logical name that can be translated to different
physical locations, and each process has its own trans. table

- One person can’t hurt another because he can’t see or use other
people’s page table (he can’t touch others’ 0x30)

- We can run program that uses more physical memory than we
have because we can name a huge amount of virtual memory,
not all of which fit in physical memory (can name 0xF9AB)

CS126 23-27 Randy Wang

Paging

• Basic idea: allowing remapping of memory at word
granularity is too much trouble

• So only remap at page granularity:
- Divide up memory into blocks that are called pages
- Each virtual page can be placed in any physical memory frame
- Each translation involves two steps:
 + Decide which physical frame holds the logical page
 + Decide where the address is inside the page (the offset)
 + The physical address is formed by gluing together the

physical page number and the offset

Paging Example

• 4-byte pages
• Consider the virtual address 1110=10112
• Chop it into two parts

- Virtual page number 210=102
- Offset within page 310=112

• Look up the page table and find that virtual page
2 is stored at physical page 1

• The physical address is 710=01112

• Each process has its own page table

physical memory

CS126 23-29 Randy Wang

Paging to Disk

• If we can’t fit all the virtual memory in physical memory,
we need to temporarily stash some pages on disk

• To optimize performance, we need to decide which ones to
toss out and which ones to keep, this is called page
replacement

• The provably optimal strategy:
- Replace the page which will not be needed for the longest
period in the future

- Problem: requires prediction of future, which is impossible

• Many heuristics used in real li fe
- One of the most popular ones is LRU: least recently used

CS126 23-30 Randy Wang

Outline

• Introductions

• History

• General mechanisms

• Process management

• Memory management

• File systems

• Conclusions

Storage Hierarchies
• Each lower level is

- slower,
- bigger,
- farther away, and
- cheaper

• Who manages what
- registers: compiler
- cache: hardware
- memory: OS
- disk: OS

• The performance of lower
level is becoming
increasingly important

CS126 23-32 Randy Wang

Storage Hierarchy Latency (by Jim Gray)

• And the “universe” is expanding -- farther things are getting farther faster!

CS126 23-33 Randy Wang

Have You Ever Opened Up a Disk Drive?

Have You Ever Opened Up a Disk Drive? (cont.)
State-of-art (1999):

• Rotation speed:
10,000 RPM

• Capacity: 50 GB

• Bandwidth:
~20MB/s

• Average latency:
~10ms

• Improvement:
both capacity and
bandwidth are
increasing at the
rate of about 50%
per year!

CS126 23-35 Randy Wang

Levels of Abstractions

• Inside the disk: things are complicated

• Abstraction exported by the disk to the operating system:
an array of blocks, which are called sectors, 512 bytes each

• The abstraction exported by the operating system to the
user: directories and files

• In reality, the abstraction isn’t quite as clean: problem:
disks have non-uniform access time and we need to worry
about where things sit

CS126 23-36 Randy Wang

Unix File System Internals

.

name i-number

58

.. 77

foo 25

bar 37

pointers

27

26

25

24

......

......

......
i-number attributes

i-node table

directory

file blocks

CS126 23-37 Randy Wang

Outline

• Introductions

• History

• General mechanisms

• Process management

• Memory management

• File systems

• Conclusions

CS126 23-38 Randy Wang

Common Strategies

• Chop up resources into small pieces and allocate them at
this fine-grain level: time quantum, memory pages, disk
sectors

• Introduce levels of indirection: users use logical names
which are translated into physical names: virtual memory
addresses, file system directory names, inode numbers, ...

• Use past history to predict future behavior for
optimizations: CPU scheduling, memory replacement, and
disk block allocation

CS126 23-39 Randy Wang

Challenge to OS Designers:
Distributed Systems

Some example problems for each of the areas we looked at

• CPU scheduling: it can be proven that optimal scheduling
for multiple CPUs is NP-complete!

• Memory management: how to form a giant global memory
to cache, for example, web pages?

• File system: how to gain access to your files anywhere any
time?

• How to provide security and reliability for all these
resources?

CS126 23-40 Randy Wang

A More Fundamental Question: Do We
Need to Reexamine How We Make OSes

• Much of everything in OS we looked at is inherited from
the historical development of multiprogramming

• Some predicted that the PC revolution would kil l OSes,
didn’ t happen, we ended up “going back to the future”

• Is the next wave fundamentally different?

• Or are we doomed to “going back to the future” again?

CS126 23-41 Randy Wang

What Does Java Have To Do with All This?

• JVM provides far more than simple portablity
• It manages resources, provides security, and provides

sharing
• So it’s in effect an OS!
• Intriguing: fundamentally different way of providing

protection: at language level
- Java: s/w based protection based on type safety of objects
- Virtual memory: h/w protection based on pages of memory
- Can you tell which is better??

CS126 23-42 Randy Wang

Meta-Advice: Stay Broad

• The developments in OS are a perfect example of why you
want to stay broad, as this class is

• Why don’t you just teach me programming?
- Robot programmers never get to define the future
- Robot programmers die along with obsolete systems

• Today there is a shortage of 25-year old engineers, and a
surplus of 45-year-old ones. Why? How do you make sure
that you don’t become a surplus when you’re 45?

