“Systems’ Part of the Class

*What isthe “system”?
- Loosely defined as anything that’s not your application

* Why should you care?
- Learn more about the pieces that constitute alarge part of your
daily computing life
- The boundaries between the different pieces are becoming
increasingly fussy in this age, so an “application” can have
elements of “the system” built in

Cs126 221 Randy Wang

CS 126 Lecture SI:
| ntroduction to Java

Outline

* | ntroduction
- History
- Javavs. C
- How tolearn

* The basics

* Object-oriented niceties
* |ntro to applets

* Conclusions

CsS126 22-3 Randy Wang

Roadmap

* Java
- Superficially, a continuation of the programming part
- But, there is a profound connection between Java and OS

* Operating systems
- The missing link between hardware and applications
* Networking

Cs126 222 Randy Wang

History (cont.)

¢ Joy and Gosling joined forces, FirstPerson, Inc. (1992)
- Targeting consumer electronics: PDAS, appliances, phones, all
with cheap infra-red kind of networks
* Need alanguage that's small, robust, safe, secure, wired
- Started working on C++- -
- Soon gave up hope, decided to start from scratch
* Again, alittle ahead of itstime
- PDAs died with the demise of Apple Newton
- Switched to interactive TV (ITV)
- The resulting language was called “ Oak”
- Then ITV died too
* The net exploded in 1993
- Oak became Javal

CS126 22-5 Randy Wang

History
* Bill Joy and Sun
- BSD god at Berkeley
- Founding of Sun (early 80s)
- “The network is the computer” (alittle ahead of itstime)
- Missed the boat on PC revolution
- Sun Aspen Smallworks (1990)
* James Gosling
- Early fame as the author of “Gosling Emacs’ (killed by GNU)
- Then onto Sun’s “NeWS’ window system (killed by X)
- Lesson 1: keeping things proprietary iskiss of death
- Lesson 2: power of integrating three things:
+ an expressive language
+ network-awareness, and
+ aGUI (graphical user interface)

CS126 22-4 Randy Wang

Javavs. C

* Comparison inevitable, but...

*“Javais best taught to people not contaminated by C”
- Important to “think Java’, instead of “trandating C to Java”

* Similarities between C and Java are skin-deep
- Syntatic sugar to make it easy to swallow
- Tersenessis good
- Underlying philosophies are like day and night
* Theme of this class: levels of abstraction
- C exposes the raw machine
- Javavirtualizes the machine

CS126 22-7 Randy Wang

History (cont.)

* Many success storiesin CS
- Very much like what we said about Unix
- Not atechnological breakthrough

- All of the features of Javawere present in earlier research
systems

- The“genius’ liesin the good taste of assembling asmall and
elegant set of powerful primitives that fit together well and
tossing everything else

* Luck helpsalot too

CS126 22-6 Randy Wang

How to Learn

* The best language to learn on-line, which isthe best way to
learn Javal
- http://www.javasoft.com
- http://java.sun.com/docs/books/tutorial/index.html
- http://java.sun.com/j2se/1.3/docs/api/index.html

* Start with existing code, read code, read docs

* Experiment by making small changes and adding
functionality progressively

* My personal opinion: learning a second programming
language in aclassis awaste of time :-)

* S0, it'sreadlly just ahighlight

Cs126 229 Randy Wang

Javavs. C (cont.)
* Bad things you can do in C that you can’t do in Java
- Shoot yourself in the foot (safety)
- Others shoot you in the foot (security)
- Ignoring wounds (error handling)
* Dangerous things you haveto do in C that you don't in
Java
- Handling ammo (memory management: malloc/free)
* Good things that you can do in C but you don't; Java
makes you
- Good practices (objected-oriented methodol ogy)
* Good thingsthat you can’t do in C but you can now
- Killswith asingle bullet (portability)
* Aninteresting lesson in abstraction (and politics?): making
things better by “taking away” power
* [Wewill revisit these differences after we learn more about
Java]

Cs126 22-8 Randy Wang

Your First Java Program

nocha: t np% cat > hello.java

class hello {
public static void main(String[] args) {
Systemout.printin("Hello World!'");

}
nocha: t np% j avac hel |l o.java

nocha: tnp%1s hello.*
hello.class hello.java

nocha: t np% j ava hel l o
Hel 1l o Worl d!

* Sourcefile: “hel | 0. j ava”

* Javacompiler: j avac

*Bytecode: “hel | 0. cl ass”

e Javainterpreter: j ava

e Caningtall JDK on any machine, including your PC
* Other toolsin JDK: j db, j avadoc

Cs126 22-11 Randy Wang

Outline

* tntroduetion
e Thebasics
- First Java program and tools of trade
- Classes, methods, and objects
- Arrays
- “Pointers’
- Libraries
* Object-oriented niceties
* Intro to applets
* Conclusions

Cs126 2210 Randy Wang

Classes, Methods, and Objects

public class MyStack { i mport MStack;
Qbj ect[] itens;
int n; class StackTest {
public static void
public NySt ack() { main(String[] args) {
i tema = new Obj ect[1000] ;
n=0; M/Stack s = new MyStack();
} s.push("first");
public void push(G)J ect item { s. push("second");
items[n++] = item s.push("third");
} while (!s.empty())
public Object pop() { Systemout.println
return itens[--n]; (s.pop());
}
public bool ean errpty() { }
return n ==
My St ack. j ava StackTest.java

® (Don't need to understand everything in this code, yet)

® A program is a sequence of classes (no .h files!)

® A classislike astruct, one difference: methods: operations that act on the data
that makes up the class

® A method islike afunction. (Note how they are invoked.)

® Anobjecttoaclassin Javaislikeavariableto atypein C

Compiling vs. Interpreting

conpi | e
—cc ™ [native binary code "Unhardwar e
¢} a. out Sun

Cc ile
hello.c “——= native binary codellUNhardvare
a. out PC

4<w‘l nter pret er‘ N har dvar e ‘

java code|com | ¢| byte code java Sun

hel 0. aval Javac pe| | o, ¢l ass.q MLErPret i erpreter " fhar dwar e
java PC

* Interpreter: alevel of abstraction: the “virtual machine’
* The advantage of interpreting is beyond portability

* A convenient placeto exercise al sorts of control

¢ Disadvantage: slower

Cs126 2213 Randy Wang

Cs126 2212 Randy Wang

Arr ayS («till same example)

public class MyStack {
bj ect[] itens;
int n;

. pdeclaration

public NySt ack() {)
i tens = new Obj ect [1000]; -e+—allocation
n=0;

}
public void push(G)J ect item {
items[n++] =it

}
public Qoject pop() {
return items[--n];

}
publ i ¢ bool ean errpty() {
return n ==

M/St ack. j ava
® Arrays arefirst class citizen of Java
® No other back-doors of accessing them, for example, no pointer arithmetic
® Array reference bounds are checked at run time
- No seg faults possible, tremendous help in reducing headaches
- Also important implications for safety, security, and encapsulation

More Thoughts/Details on This Example

public class M/St ack { i mport MStack;
Qbject[] itend,
int n; class StackTest {
public staticowvoid
public ack() { mai n(String[
items
n=20 ();

itemg[n++] = item

Lubl i ¢ \Obj ect pop(]) {

returl itens| /I (& pop()):
} N
public bpol ean enpty() {

return\g == 0;

M/ Stack. j ava St ackfest.java
® Other than the primitives gch as int, ghar, bool s’4ariables are objects
® Concepts of object declaration, allocation, and a constructor
® How to design a Java program: think objects!

- What objects do | break the problem into?

- What operations do they alow?

- How do | implement them using even smaller objects?

Cs126 22-15 Randy Wang

Cs126 22-14 Randy Wang

Java Libraries (Packages)
* Huge number of pre-written libraries

* Always check before you reinvent something of your own

* Watch out for version differences
- http://java.sun.com/j2se/1.3/docs/api/index.html
- Reading these docsis amajor part of learning/programming
Java
- Get a big picture of what they are but read details on-demand

- “Java.util” library has alot of useful data structure stuff: linked
list, stacks, ...

* On the next dlide, | will give athird implementation of the
stack using alibrary class: Vector isan array that doesn’t
require you to pre-specify a size and doesn’t fill up!

Pointersand Linked List

class MyNode { public class MyStack {
bj ect item M/Node list = null;
My/Node next;
public MyStack() {}
My/Node(Chj ect item public void push(Object iten {
M/Node next) { list = new MyNode
this.item=item (item list);
this.next = next;
public Object pop() {
} bject obj =1list.item
list = 1list.next;
return obj;

}
public bool ean enpty() {
return list == null;

My St ac }.j ava
® Officially no pointers anywhere, behind the scene, each object is a pointer,
called areference, specia nul | reference part of language
® No pointer arithmetic, no*, no- >, nofree(), no pointer bugs, no pain
® Reimplement stack using alinked list
- push() codetricky: it allocates a new node, made by calling the
constructor, which puts the old list head into the next field of the new node.

Cs126 22-17 Randy Wang Cs126 22-16 Randy Wang
Outline Example Use of Library
inport java.util.*, <e————————— Sort of like #include
* tntroduction public class MyStack { . .
Vector itens;, = » Vector is a class inplemented
* The basies public NyStack() { by the java.util library,
items = new Vector(); called a package
. _ . . . }

* Object-oriented niceties public void push(Qbject |ten) {

- Inheritance i tems. addEl ement (1ten);

- i public Object pop() {

Encapsulation int end = itens.size()-1;, -=
- Codereuse Qj ect obj :('e:]g)ms element Al #— | of these are operations
_ ; : ; ; , - i mpl ement ed by the package.
Multipleimplementations Items. rennvel(ELﬁg?ptAt - You find out about them by
return obi: ! readi ng the documentati on,
* |ntro to applets } I whi ch you can downl oad as
; whol e or read online.
. publ i ¢ bool ean enpty() { a
e Conclusions return itens.isEmty(); e
}
My/St ack. j ava
CS126 22-19 Randy Wang CS126 22-18

Randy Wang

Encapsulation and Access Control

publie ass MyStack {
protect ed\(bj ect[] itens;
protected /nt n;

Cubl i OWyStack() {

ens = new Obj ect[1000];

n=0;

}

public void push(G)J ect item {
items[n++] = item

}
public Ooject pop() {
return items[--n];

}
publ i ¢ bool ean enpty() {
return n ==

M/ St ack. j ava
® User of this class sees only what he's allowed to see
® Three key words:
- pri vat e: accessible only by this class
- pr ot ect ed: subclasses can see it too
- publ i c: accessibleto all
- (additional dedls for “packages’, read about them on-lineif you care)

Inheritance

public class Ml nprovedStack egtends MyStack I nherits everything

i j from MySt ack
puiblflfnazlzeg; R) Overwites old M
return null; i npl enent at i on

return items[--n];

}
public Object Adds new functionality
if (n<=0) {
return null;

return items[n-1];
}
}

M| nprovedSt ack. j ava

* MylmprovedStack is a subclass of MyStack

* This example: adding functionality

* Another example use: “ specialization” --a student class
inherits from a person class

Cs126 22-21 Randy Wang Cs126 22-20 Randy Wang
Multiple Implementations Code Reuse
i mport MyStack; import MyStack; d
i mport MyArr St ack; Common interface class StackTest { Same code, same type
import MyList Stack; public static voi f ¥hol] args) {

class StackTest {
publ i voi d main(String[] args) {

D| fferent i mpl errent ations

s.push ("fi S. push ("second");
while (!s. enpty()) Systemout. println(s.pop());

StackTest. java

* Aslong as acommon interface is agreed upon
* We can pick and choose different implementations
* How’'s this done? Next dlide...

MStack s1 < new My
sl.push ("first")¢ sl push ("second");

while (!sl.egpty()) Systemout.Rrintlin(sl. pop());
M/Stack s2 = new MyStack();
s2. push(new I nteger(1)); s2.push(
while (!s2.enpty()) Systemout.priktl

ew Integer(2));
s2.pop());

} But different things in the stacks

St ackTest . j ava

* This example: no need to write different codes for stack of
Strings and stack of Integers

Cs126 2223 Randy Wang

Cs126 2222 Randy Wang

Javavs. C (Revisit)
* Bad things you can do in C that you can't do in Java
- Shoot yourself in the foot (safety)
- Others shoot you in the foot (security)
- Ignoring wounds (error handling)

* Dangerous things you haveto do in C that you don't in
Java

- Handling ammo (memory management: malloc/free)

* Good things that you can do in C but you don't; Java
makes you

- Good hunting practices (objected-oriented methodol ogy)
* Good things that you can’t do in C but you can how
- Killswith asingle bullet (portahility)

Abstract Classes

public abstract class MyStack {
public abstract void push(Object item;
public abstract Cbject pop();
public abstract bool ean enmpty();

}

My/St ack. j ava

import MyStack;
public class M/ArrStack extends MyStack {

M/Arr St ack. j ava

i mport MyStack;
public class MyListStack extends MyStack {

M/Li st St ack. j ava
* Abstract classes specify interfaces, no implementation

* Implementations inherit abstract classes and fill in
implementation details

Outline What We Have L ear ned
* |ntroduction * These are highlights, by no means complete
* Fhebasies * Best way of learning
* Object-oriented-niceties - Study the tutorial online

°|ntroto applets

e Conclusions

Cs126 2227 Randy Wang

- Read and experiment with existing code
- Read docs

¢ | don't expect peopleto memorize or be ableto
reproduce syntatic details

* | do expect people to be ableto read and under stand
given code and concepts discussed

Cs126 22-26 Randy Wang

Mini-Outline

* Your first applet and moretools of trade

e Lifecycle of an applet, “funny” part
- You have to write awhole bunch of methods you don't call
- You call awhole bunch of methods that you didn’t write

e Simple drawing and events

Cs126 22-29 Randy Wang

Applets. Beyond Animated Clowns

* What can you do when you can slurp code over the net?
* Extensibility
- Bill Joy: “No more protocols; just code!”

- No need for hard wired networ k protocols
- No need for hard wired information content protocols

* A brave new world
- New way of structuring applications (local or distributed)
- New way of structuring operating systems (local or
distributed)
* Today is only an introduction to the bare basics
- Encourage interested people to explore on their own
- It's fun and there's nothing hard

Cs126 2228 Randy Wang

Life Cycle of an Applet

inport java.applet.Applet; public void destroy() {
inport java.awt .G aphics; addl ten("preparing for unloading...");
}
public class Sinple extends Applet {
StringBuffer buffer; voi d addlten(String newwrd) {
System out. println(newrd);
public void init() { buf f er. append(newér d) ;
buffer = new StringBuffer(); repaint();
addltem("initializing... "); }

public void paint(Gaphics g) {
public void start() { g.drawstring(buffer.toString(), 5, 15);
addlten("starting... "); }
}

public void stop() {
addl tem("stopping... ");

e init(): browser callsit when applet first loaded

e start(): start execution (eg. after becoming visible)

* stop(): stop execution (eg. after switching to different page)
e destroy(): clean up after final exit

e paint(): browser tellsit it'stime to redraw

Your First Java Applet

i mport java. appl et. Appl et;
i mport | ava.aw .G aphics; .
Hel l 0.] ava
public class Hello extends Applet {
public void paint(Gaphics g) {
g.drawString("Hello world!'", 125, 95);

Cs126 2231 Randy Wang

<HTM.><BODY>
<APPLET CODE=Hel | 0. cl ass W DTH=300 HEl GHT=200></ APPLET>
hel l o. ht M | </ BODY></ HTML>

®*Totryit
- Compile:j avac Hel |l 0. ava
- Test: appl etvi ewer hell o. htm
- Or: put all these filesin apublicly accessible directory (such as ~/
public_htm andview usingnet scape)
® What happens
- .html and .class files are slurped over the net
- The browser has avirtual machine (interpreter) in it
- It checks for security violations and runsit if ok.

Cs126 2230 Randy Wang

Example (cont.) -- Drawing
public void paint(Gaphics g) {

/1 draw a bl ack border and a white background

g. set Col or (Col or. white);

g.fill Rect (0, 0, getSize().width - 1,
get Si ze(). height - 1);

g. set Col or (Col or. bl ack) ;

g.drawRect (0, 0, getSize().width - 1,
get Si ze(). height - 1);

/1 draw the spot
g. set Col or (Col or.red);
if (spot !'=null) {
g.fill Oval (spot.x - RADIUS,
spot.y - RADI US,
RADI US * 2, RADIUS * 2);

Cs126 22-33 Randy Wang

A Slightly Larger Example

i mport java. appl et. Appl et;
i mport java.awt.*;
i mport java.awt.event.*;

A hel per class for the dot
cl as _
pur ;

}

ubltc int size

public int x, y;

public Spot(int size) {

this. size
this.x
this.y

si ze;

_1'
-1

public class dickMe extends Appl_
<{mplenents Mouselistemer{ -t el

private Spot spot = null;

private status =7
A constant that can’'t be changed

CS126

22-32 Randy Wang

Outline

e Conclusions

CsS126 22-35 Randy Wang

Example (cont.) -- Event Handling

public class CickMe extends Applet
<impl enents MbuseLlstesner {

Mousel istner isan interface.

“thlS’

instance of the class.

ClickM e promises to implement
everything specified by the interface.
(Kindof like multipleinheritancein C++

iIsthereferenceto this

public void ini t()?
addMouseli st ener

public void nmousePressed{VDUSEEVENT event) {
if (spot == null) {

}

t hi S)AslongasChckMe romisesto
implement the intertace, it can now|
accept mouse events.

Thebrowser callsthea tﬁ) let
spot = new Spot (RADI US)through this method w
the mouseis pressed.

Spot. X
spot.y

event. get X() ; |Figure out where the mouseis and
event. get Y trigger a paint() through repaint().

r epai nt (_) on't n €Se, but a promise|s]
} [gpromlse. |

public void nmouseRel eased(MouseEvent event) {}
public void nmouseEnt ered(MouseEvent event) {}
public void nmouseExited(MuseEvent event|) {}

CS126

22-34 Randy Wang

The“Truth” (cont.)

* “Productive”
- Much less debugging headaches: no pointer probs, exceptions
- Stealing has never been easier: the net, portability, reusability
- Excellent documentation
- Large and growing body of libraries to help: utilities, media,
GUI, networking, threads, databases, cryptogaphy...
- Flip side: versions, large libraries
*“Sow”
- Interpreted, too many tiny objects and methods
- Hip side: just-in-time compiling can make things almost as
fast as native code
*“Hype’
- Important for momentum which translates into community
expertise and support, applications, tools, and libraries
- Flip side: hasty dicision-making to feed the frenzy
* Only game in town?
- Unprecedented roles for scripting languages on the net

CS126 22-37 Randy Wang

The*“ Truth”
¢ “KISS
- Large number of complicated features of C++ gone
- The language isincredibly small

- Flip side: huge number of libraries and you can't be a serious
Java programmer without knowing alot about them

e “Modern”

- Garbage collection, strongly typed, exceptions, support for
multi-threading and networking

- Flip side: ideas have been around in the research community
for ages: Modula-3, Smalltalk, Lisp, C++, Object C

* “Secure”
- A nice three-tier protection system: verifier, class loader, and
security manager.
- Can reason about it formally
- Flip side: bugs

CS126 22-36 Randy Wang

