“Systems’ Part of the Class

*What isthe “system”?
- Loosely defined as anything that’s not your application

* Why should you care?
- Learn more about the pieces that constitute alarge part of your
daily computing life
- The boundaries between the different pieces are becoming
increasingly fussy in this age, so an “application” can have
elements of “the system” built in
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CS 126 Lecture SI:
| ntroduction to Java

Outline

* | ntroduction
- History
- Javavs. C
- How tolearn

* The basics

* Object-oriented niceties
* |ntro to applets

* Conclusions
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Roadmap

* Java
- Superficially, a continuation of the programming part
- But, there is a profound connection between Java and OS

* Operating systems
- The missing link between hardware and applications
* Networking
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History (cont.)

¢ Joy and Gosling joined forces, FirstPerson, Inc. (1992)
- Targeting consumer electronics: PDAS, appliances, phones, all
with cheap infra-red kind of networks
* Need alanguage that's small, robust, safe, secure, wired
- Started working on C++- -
- Soon gave up hope, decided to start from scratch
* Again, alittle ahead of itstime
- PDAs died with the demise of Apple Newton
- Switched to interactive TV (ITV)
- The resulting language was called “ Oak”
- Then ITV died too
* The net exploded in 1993
- Oak became Javal
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History
* Bill Joy and Sun
- BSD god at Berkeley
- Founding of Sun (early 80s)
- “The network is the computer” (alittle ahead of itstime)
- Missed the boat on PC revolution
- Sun Aspen Smallworks (1990)
* James Gosling
- Early fame as the author of “Gosling Emacs’ (killed by GNU)
- Then onto Sun’s “NeWS’ window system (killed by X)
- Lesson 1: keeping things proprietary iskiss of death
- Lesson 2: power of integrating three things:
+ an expressive language
+ network-awareness, and
+ aGUI (graphical user interface)
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Javavs. C

* Comparison inevitable, but...

*“Javais best taught to people not contaminated by C”
- Important to “think Java’, instead of “trandating C to Java”

* Similarities between C and Java are skin-deep
- Syntatic sugar to make it easy to swallow
- Tersenessis good
- Underlying philosophies are like day and night
* Theme of this class: levels of abstraction
- C exposes the raw machine
- Javavirtualizes the machine
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History (cont.)

* Many success storiesin CS
- Very much like what we said about Unix
- Not atechnological breakthrough

- All of the features of Javawere present in earlier research
systems

- The“genius’ liesin the good taste of assembling asmall and
elegant set of powerful primitives that fit together well and
tossing everything else

* Luck helpsalot too
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How to Learn

* The best language to learn on-line, which isthe best way to
learn Javal
- http://www.javasoft.com
- http://java.sun.com/docs/books/tutorial/index.html
- http://java.sun.com/j2se/1.3/docs/api/index.html

* Start with existing code, read code, read docs

* Experiment by making small changes and adding
functionality progressively

* My personal opinion: learning a second programming
language in aclassis awaste of time :-)

* S0, it'sreadlly just ahighlight
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Javavs. C (cont.)
* Bad things you can do in C that you can’t do in Java
- Shoot yourself in the foot (safety)
- Others shoot you in the foot (security)
- Ignoring wounds (error handling)
* Dangerous things you haveto do in C that you don't in
Java
- Handling ammo (memory management: malloc/free)
* Good things that you can do in C but you don't; Java
makes you
- Good practices (objected-oriented methodol ogy)
* Good thingsthat you can’t do in C but you can now
- Killswith asingle bullet (portability)
* Aninteresting lesson in abstraction (and politics?): making
things better by “taking away” power
* [Wewill revisit these differences after we learn more about
Java]
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Your First Java Program

nocha: t np% cat > hello.java

class hello {
public static void main(String[] args) {
Systemout.printin("Hello World!'");

}
nocha: t np% j avac hel |l o.java

nocha: tnp%1s hello.*
hello.class hello.java

nocha: t np% j ava hel l o
Hel 1l o Worl d!

* Sourcefile: “hel | 0. j ava”

* Javacompiler: j avac

*Bytecode: “hel | 0. cl ass”

e Javainterpreter: j ava

e Caningtall JDK on any machine, including your PC
* Other toolsin JDK: j db, j avadoc
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Outline

* tntroduetion
e Thebasics
- First Java program and tools of trade
- Classes, methods, and objects
- Arrays
- “Pointers’
- Libraries
* Object-oriented niceties
* Intro to applets
* Conclusions
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Classes, Methods, and Objects

public class MyStack { i mport MStack;
Qbj ect[] itens;
int n; class StackTest {
public static void
public NySt ack() { main(String[] args) {
i tema = new Obj ect[1000] ;
n=0; M/Stack s = new MyStack();
} s.push("first");
public void push(G)J ect item { s. push("second");
items[n++] = item s.push("third");
} while (!s.empty())
public Object pop() { Systemout.println
return itens[--n]; (s.pop());
}
public bool ean errpty() { }
return n ==
My St ack. j ava StackTest.java

® (Don't need to understand everything in this code, yet)

® A program is a sequence of classes (no .h files!)

® A classislike astruct, one difference: methods: operations that act on the data
that makes up the class

® A method islike afunction. (Note how they are invoked.)

® Anobjecttoaclassin Javaislikeavariableto atypein C

Compiling vs. Interpreting

conpi | e
—cc ™ [native binary code "Unhardwar e
¢} a. out Sun

Cc ile
hello.c “——= native binary codellUNhardvare
a. out PC

4<w‘l nter pret er‘ N har dvar e ‘

java code|com | ¢| byte code java Sun

hel 0. aval Javac pe| | o, ¢l ass.q MLErPret i erpreter " fhar dwar e
java PC

* Interpreter: alevel of abstraction: the “virtual machine’
* The advantage of interpreting is beyond portability

* A convenient placeto exercise al sorts of control

¢ Disadvantage: slower
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Arr ayS («till same example)

public class MyStack {
bj ect[] itens;
int n;

. pdeclaration

public NySt ack() { )
i tens = new Obj ect [ 1000]; -e+—allocation
n=0;

}
public void push(G)J ect item {
items[n++] =it

}
public Qoject pop() {
return items[--n];

}
publ i ¢ bool ean errpty() {
return n ==

M/St ack. j ava
® Arrays arefirst class citizen of Java
® No other back-doors of accessing them, for example, no pointer arithmetic
® Array reference bounds are checked at run time
- No seg faults possible, tremendous help in reducing headaches
- Also important implications for safety, security, and encapsulation

More Thoughts/Details on This Example

public class M/St ack { i mport MStack;
Qbject[] itend,
int n; class StackTest {
public staticowvoid
public ack() { mai n( String[
items
n=20 ();

itemg[n++] = item

Lubl i ¢ \Obj ect pop(]) {

returl itens| /I (& pop()):
} N
public bpol ean enpty() {

return\g == 0;

M/ Stack. j ava St ackfest.java
® Other than the primitives gch as int, ghar, bool s’4ariables are objects
® Concepts of object declaration, allocation, and a constructor
® How to design a Java program: think objects!

- What objects do | break the problem into?

- What operations do they alow?

- How do | implement them using even smaller objects?

Cs126 22-15 Randy Wang

Cs126 22-14 Randy Wang




Java Libraries (Packages)
* Huge number of pre-written libraries

* Always check before you reinvent something of your own

* Watch out for version differences
- http://java.sun.com/j2se/1.3/docs/api/index.html
- Reading these docsis amajor part of learning/programming
Java
- Get a big picture of what they are but read details on-demand

- “Java.util” library has alot of useful data structure stuff: linked
list, stacks, ...

* On the next dlide, | will give athird implementation of the
stack using alibrary class: Vector isan array that doesn’t
require you to pre-specify a size and doesn’t fill up!

Pointersand Linked List

class MyNode { public class MyStack {
bj ect item M/Node list = null;
My/Node next;
public MyStack() {}
My/Node( Chj ect item public void push(Object iten {
M/Node next) { list = new MyNode
this.item=item (item list);
this.next = next;
public Object pop() {
} bject obj =1list.item
list = 1list.next;
return obj;

}
public bool ean enpty() {
return list == null;

My St ac }.j ava
® Officially no pointers anywhere, behind the scene, each object is a pointer,
called areference, specia nul | reference part of language
® No pointer arithmetic, no*, no- >, nofree(), no pointer bugs, no pain
® Reimplement stack using alinked list
- push() codetricky: it allocates a new node, made by calling the
constructor, which puts the old list head into the next field of the new node.
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Outline Example Use of Library
inport java.util.*, <e————————— Sort of like #include
* tntroduction public class MyStack { . .
Vector itens;, = » Vector is a class inplemented
* The basies public NyStack() { by the java.util library,
items = new Vector(); called a package
. _ . . . }

* Object-oriented niceties public void push(Qbject |ten) {

- Inheritance i tems. addEl ement (1ten);

- i public Object pop() {

Encapsulation int end = itens.size()-1;, -=
- Codereuse Qj ect obj :( 'e:]g)ms element Al #— | of these are operations
_ ; : ; ; , - i mpl ement ed by the package.
Multipleimplementations Items. rennvel(ELﬁg?ptAt - You find out about them by
return obi: ! readi ng the documentati on,
* |ntro to applets } I whi ch you can downl oad as
; whol e or read online.
. publ i ¢ bool ean enpty() { a
e Conclusions return itens.isEmty(); e
}
My/St ack. j ava
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Encapsulation and Access Control

publie ass MyStack {
protect ed\(bj ect[] itens;
protected /nt n;

Cubl i OWyStack() {

ens = new Obj ect[1000];

n=0;

}

public void push(G)J ect item {
items[n++] = item

}
public Ooject pop() {
return items[--n];

}
publ i ¢ bool ean enpty() {
return n ==

M/ St ack. j ava
® User of this class sees only what he's allowed to see
® Three key words:
- pri vat e: accessible only by this class
- pr ot ect ed: subclasses can see it too
- publ i c: accessibleto all
- (additional dedls for “packages’, read about them on-lineif you care)

Inheritance

public class Ml nprovedStack egtends MyStack I nherits everything

i j from MySt ack
puiblflfnazlzeg; R ) Overwites old M
return null; i npl enent at i on

return items[--n];

}
public Object Adds new functionality
if (n<=0) {
return null;

return items[n-1];
}
}

M| nprovedSt ack. j ava

* MylmprovedStack is a subclass of MyStack

* This example: adding functionality

* Another example use: “ specialization” --a student class
inherits from a person class
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Multiple Implementations Code Reuse
i mport MyStack; import MyStack; d
i mport MyArr St ack; Common interface class StackTest { Same code, same type
import MyList Stack; public static voi f ¥hol] args) {

class StackTest {
publ i voi d main(String[] args) {

D| fferent i mpl errent ations

s.push ("fi S. push ("second");
while (!s. enpty()) Systemout. println(s.pop());

StackTest. java

* Aslong as acommon interface is agreed upon
* We can pick and choose different implementations
* How’'s this done? Next dlide...

MStack s1 < new My
sl.push ("first")¢ sl push ("second");

while (!sl.egpty()) Systemout.Rrintlin(sl. pop());
M/Stack s2 = new MyStack();
s2. push(new I nteger(1)); s2.push(
while (!s2.enpty()) Systemout.priktl

ew Integer(2));
s2.pop());

} But different things in the stacks

St ackTest . j ava

* This example: no need to write different codes for stack of
Strings and stack of Integers
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Javavs. C (Revisit)
* Bad things you can do in C that you can't do in Java
- Shoot yourself in the foot (safety)
- Others shoot you in the foot (security)
- Ignoring wounds (error handling)

* Dangerous things you haveto do in C that you don't in
Java

- Handling ammo (memory management: malloc/free)

* Good things that you can do in C but you don't; Java
makes you

- Good hunting practices (objected-oriented methodol ogy)
* Good things that you can’t do in C but you can how
- Killswith asingle bullet (portahility)

Abstract Classes

public abstract class MyStack {
public abstract void push(Object item;
public abstract Cbject pop();
public abstract bool ean enmpty();

}

My/St ack. j ava

import MyStack;
public class M/ArrStack extends MyStack {

M/Arr St ack. j ava

i mport MyStack;
public class MyListStack extends MyStack {

M/Li st St ack. j ava
* Abstract classes specify interfaces, no implementation

* Implementations inherit abstract classes and fill in
implementation details

Outline What We Have L ear ned
* |ntroduction * These are highlights, by no means complete
* Fhebasies * Best way of learning
* Object-oriented-niceties - Study the tutorial online

°|ntroto applets

e Conclusions

Cs126 2227 Randy Wang

- Read and experiment with existing code
- Read docs

¢ | don't expect peopleto memorize or be ableto
reproduce syntatic details

* | do expect people to be ableto read and under stand
given code and concepts discussed
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Mini-Outline

* Your first applet and moretools of trade

e Lifecycle of an applet, “funny” part
- You have to write awhole bunch of methods you don't call
- You call awhole bunch of methods that you didn’t write

e Simple drawing and events
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Applets. Beyond Animated Clowns

* What can you do when you can slurp code over the net?
* Extensibility
- Bill Joy: “No more protocols; just code!”

- No need for hard wired networ k protocols
- No need for hard wired information content protocols

* A brave new world
- New way of structuring applications (local or distributed)
- New way of structuring operating systems (local or
distributed)
* Today is only an introduction to the bare basics
- Encourage interested people to explore on their own
- It's fun and there's nothing hard
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Life Cycle of an Applet

inport java.applet.Applet; public void destroy() {
inport java.awt .G aphics; addl ten("preparing for unloading...");
}
public class Sinple extends Applet {
StringBuffer buffer; voi d addlten(String newwrd) {
System out. println(newrd);
public void init() { buf f er. append( newér d) ;
buffer = new StringBuffer(); repaint();
addltem("initializing... "); }

public void paint(Gaphics g) {
public void start() { g.drawstring(buffer.toString(), 5, 15);
addlten("starting... "); }
}

public void stop() {
addl tem("stopping... ");

e init(): browser callsit when applet first loaded

e start(): start execution (eg. after becoming visible)

* stop(): stop execution (eg. after switching to different page)
e destroy(): clean up after final exit

e paint(): browser tellsit it'stime to redraw

Your First Java Applet

i mport java. appl et. Appl et;
i mport | ava.aw .G aphics; .
Hel l 0. ] ava
public class Hello extends Applet {
public void paint(Gaphics g) {
g.drawString("Hello world!'", 125, 95);
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<HTM.><BODY>
<APPLET CODE=Hel | 0. cl ass W DTH=300 HEl GHT=200></ APPLET>
hel l o. ht M | </ BODY></ HTML>

®*Totryit
- Compile:j avac Hel |l 0. ava
- Test: appl etvi ewer hell o. htm
- Or: put all these filesin apublicly accessible directory (such as ~/
public_htm andview usingnet scape)
® What happens
- .html and .class files are slurped over the net
- The browser has avirtual machine (interpreter) in it
- It checks for security violations and runsit if ok.
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Example (cont.) -- Drawing
public void paint(Gaphics g) {

/1 draw a bl ack border and a white background

g. set Col or (Col or. white);

g.fill Rect (0, 0, getSize().width - 1,
get Si ze(). height - 1);

g. set Col or (Col or. bl ack) ;

g.drawRect (0, 0, getSize().width - 1,
get Si ze(). height - 1);

/1 draw the spot
g. set Col or (Col or.red);
if (spot !'=null) {
g.fill Oval (spot.x - RADIUS,
spot.y - RADI US,
RADI US * 2, RADIUS * 2);
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A Slightly Larger Example

i mport java. appl et. Appl et;
i mport java.awt.*;
i mport java.awt.event.*;

A hel per class for the dot
cl as _
pur ;

}

ubltc int size

public int x, y;

public Spot(int size) {

this. size
this.x
this.y

si ze;

_1'
-1

public class dickMe extends Appl_
<{mplenents Mouselistemer{ -t el

private Spot spot = null;

private status =7
A constant that can’'t be changed
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Outline

e Conclusions
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Example (cont.) -- Event Handling

public class CickMe extends Applet
<impl enents MbuseLlstesner {

Mousel istner isan interface.

“thlS’

instance of the class.

ClickM e promises to implement
everything specified by the interface.
(Kindof like multipleinheritancein C++

iIsthereferenceto this

public void ini t()?
addMouseli st ener

public void nmousePressed{VDUSEEVENT event) {
if (spot == null) {

}

t hi S)AslongasChckMe romisesto
implement the intertace, it can now|
accept mouse events.

Thebrowser callsthea tﬁ) let
spot = new Spot ( RADI US)through this method w
the mouseis pressed.

Spot. X
spot.y

event. get X() ; |Figure out where the mouseis and
event. get Y trigger a paint() through repaint().

r epai nt (_) on't n €Se, but a promise|s]
} [gpromlse. |

public void nmouseRel eased( MouseEvent event) {}
public void nmouseEnt ered( MouseEvent event) {}
public void nmouseExited(MuseEvent event|) {}
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The“Truth” (cont.)

* “Productive”
- Much less debugging headaches: no pointer probs, exceptions
- Stealing has never been easier: the net, portability, reusability
- Excellent documentation
- Large and growing body of libraries to help: utilities, media,
GUI, networking, threads, databases, cryptogaphy...
- Flip side: versions, large libraries
*“Sow”
- Interpreted, too many tiny objects and methods
- Hip side: just-in-time compiling can make things almost as
fast as native code
*“Hype’
- Important for momentum which translates into community
expertise and support, applications, tools, and libraries
- Flip side: hasty dicision-making to feed the frenzy
* Only game in town?
- Unprecedented roles for scripting languages on the net
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The*“ Truth”
¢ “KISS
- Large number of complicated features of C++ gone
- The language isincredibly small

- Flip side: huge number of libraries and you can't be a serious
Java programmer without knowing alot about them

e “Modern”

- Garbage collection, strongly typed, exceptions, support for
multi-threading and networking

- Flip side: ideas have been around in the research community
for ages: Modula-3, Smalltalk, Lisp, C++, Object C

* “Secure”
- A nice three-tier protection system: verifier, class loader, and
security manager.
- Can reason about it formally
- Flip side: bugs
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