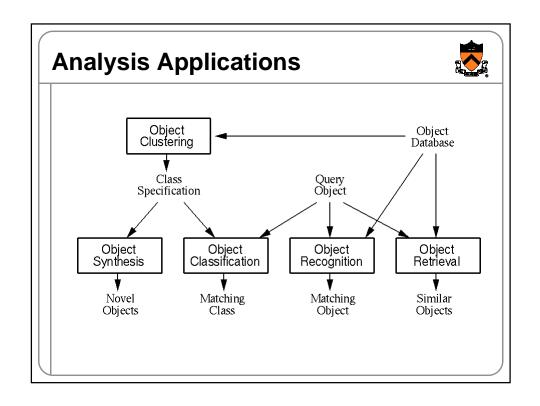


3D Shape Analysis

Thomas Funkhouser Princeton University C0S 598B, Spring 2000


Goals

- Develop algorithms for analysis of 3D models
 - Reconstruction
 - Segmentation
 - Feature detection
 - Labeling
 - Matching
 - Classification
 - Retrieval
 - Recognition
 - Clustering

Blanz et al.

- Similarity
 - What makes two objects nearly the same?
 - » Want quantitative metrics that tell us how similar two objects are
- Indexing
 - How can we preprocess database to make searches more efficient?
 - » Want concise, easily searchable representation for 3D objects
- Classes
 - What defines a group of objects?
 - » Want high-level representation for classes of objects

- Similarity
 - What makes two objects nearly the same?
 - » Want quantitative metrics that tell us how similar two objects are
- Signatures
 - What is critical essence of shape?
 - » Want concise, easily searchable representation for 3D objects
- Classes
 - What defines a group of objects?
 - » Want high-level representation for classes of objects

Similarity

- Intuitively, similarity function should:
 - Match our intuitive notion of shape resemblance
 - Be invariant under translation, rotation, and scale
 - Be easy to compute
- Ideally, it should be a metric:
 - Non-negative: d(A,B) ≥ 0 for all A and B
 Identity: d(A,B) = 0 if and only if A=B
 - Symmetry: d(A,B) = d(B,A) for all A and B
 - ∘ Triangle inequality: $d(A,B) + d(B,C) \ge d(A,C)$

Example Similarity Metrics

• L_p norm:

$$d(A,B) = \left(\sum \left\|a_i - b_i\right\|^p\right)^{1/p}$$

• Hausdorff distance:

$$\widetilde{d}(A, B) = \max_{a \in A} \min_{b \in B} ||a_i - b_i||$$
$$d(A, B) = \max \left(\widetilde{d}(A, B), \widetilde{d}(B, A)\right)$$

Similarity Metric Issues

- Data representation
 - o Point set, polygon, mesh, etc.?
- Independent of transformations
 - $\circ \ \ \text{Translation, rotation, scale, affine, projective?}$
- Automatic feature correspondences
 - Match whole object or part of object?
- Intuitive distance measure
 - Exact match?
 - Sensitive to noise?

What are good similarity metrics for 3D models?

Using a Similarity Metric

- Good for pairwise comparisons
 - Check if two objects are the same
 - Find most similar object among a small set

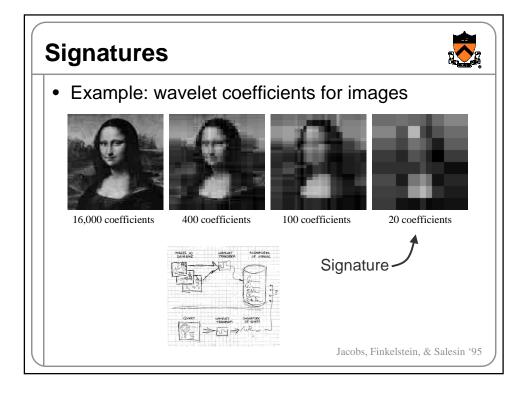
Are these the same chair?

Using a Similarity Metric

- Bad for many comparisons
 - Search for object in large database = O(n)
 - Clustering objects into similarity classes = O(n²)

Is this blue chair in the database?

- Similarity
 - What makes two objects nearly the same?
 - » Want quantitative metrics that tell us how similar two objects are
- Signatures
 - What is critical essence of shape?
 - » Want concise, easily searchable representation for 3D objects
- Classes
 - What defines a group of objects?
 - » Want high-level representation for classes of objects

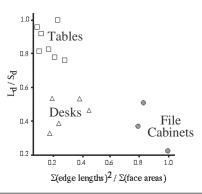

Signatures

 Concise, easily searchable representation for complex data

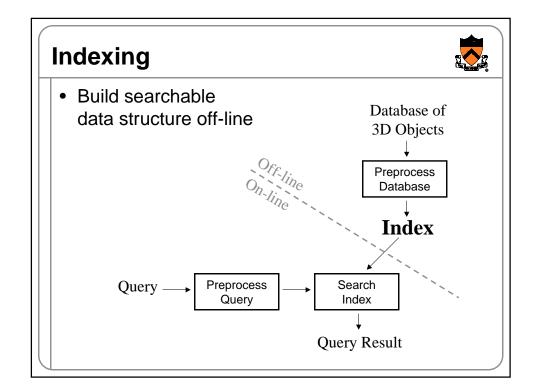
Jacobs, Finkelstein, & Salesin '95

Properties of "Good" Signatures?

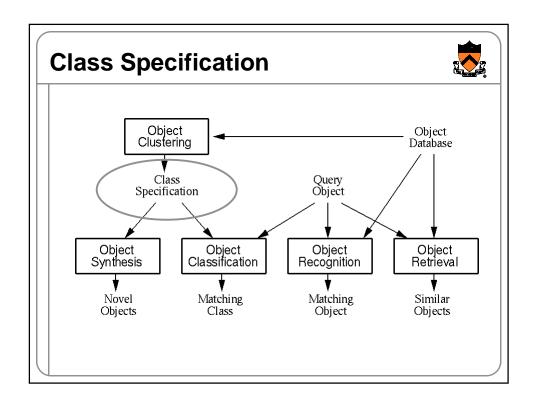
- Canonical
- Specified concisely
- Computed efficiently


- Group similar objects and separate others
- Invariant under similarity transformations
- Insensitive to sampling or topology

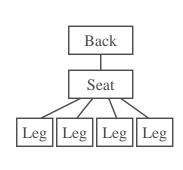
What are good signatures for 3D models?


Feature Vectors

- Compute "features" of 3D model
- Map features into multi-dimensional space
- Similarity measure is distance in feature space



What are good features of 3D models?


- Similarity
 - What makes two objects nearly the same?
 - » Want quantitative metrics that tell us how similar two objects are
- Signatures
 - What is critical essence of shape?
 - » Want concise, easily searchable representation for 3D objects
- Classes
 - What defines a group of objects?
 - » Want high-level representation for classes of objects

Class Specification

- Model-based?
 - Fit parameterized model to data
 - Quality of fit indicates likelihood of classification

Blanz et al.

Conclusion

- A lot of previous work
 - Computer vision
 - Computational geometry
 - Mechanical engineering
- Look at basics
 - o 2D polygons
 - o 3D meshes
 - 3D voxels
- Investigate higher-level analysis
 - Course projects