
Jini™ Discovery Utilities
Specification
d the

 to
The Jini™ technology is a Java™ platform-centric distributed system designed aroun
goals of simplicity, flexibility, and federation. The Jini Discovery protocols are used by
entities that wish to participate in a Jini system. This document specifies utility classes
simplify the task of using the discovery protocols.
901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300
fax 415 969-9131

Revision 1.0
January 25, 1999

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. has patent and other intellectual property rights relating to implementations
of the technology described in this Specification ("Sun IPR"). Your limited right to use this
Specification does not grant you any right or license to Sun IPR. A limited license to Sun IPR is
available from Sun under a separate Community Source License.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A RESULT OF
USING THE SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE SPECIFICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
SPECIFICATIONS AT ANY TIME, IN ITS SOLE DISCRETION. SUN IS UNDER NO OBLIGATION
TO PRODUCE FURTHER VERSIONS OF THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY BASED UPON THE SPECIFICATION. NOR IS SUN UNDER ANY OBLIGATION
TO LICENSE THE SPECIFICATION OR ANY ASSOCIATED TECHNOLOGY, NOW OR IN THE
FUTURE, FOR PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Jini, JavaSpaces, JavaSoft, JavaBeans, JDK, Java, HotJava,
HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS,
EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore,
SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop,
the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
Page ii Jini™ Discovery Utilities Specification—1.0

Contents
1. Introduction . 1

1.1 Overview . 1

1.2 Dependencies . 1

1.3 Comments . 1

2. Multicast Discovery Utility . 3

2.1 The LookupDiscovery Class . 4

2.2 Useful Constants . 5

2.3 Changing the Set of Groups to Discover 6

2.4 The DiscoveryEvent Class . 7

2.5 The DiscoveryListener Interface . 7

2.6 Security and Multicast Discovery 7

2.7 Serialized Forms . 9

3. Protocol Utilities . 11

3.1 Marshalling Multicast Requests . 11

3.2 Unmarshalling Multicast Requests 12
Page iii

3.3 Marshalling Multicast Announcements 14

3.4 Unmarshalling Multicast Announcements 15

3.5 Easy Access to Constants . 16

3.6 Marshalling Unicast Discovery Requests 17

3.7 Unmarshalling Unicast Discovery Requests 17

3.8 Marshalling Unicast Discovery Responses 18

3.9 Unmarshalling Unicast Discovery Responses 19
Page iv Jini™ Discovery Utilities Specification–1.0

Introduction 1
1.1 Overview
Each individual party in a Java™ Virtual Machine (JVM) on a given host is

independently responsible for obtaining references to lookup services. The first

chapter of this specification covers utility classes that such parties can use to

simplify multicast discovery tasks. The second chapter presents lower-level

utility classes that are useful in building the kinds of utilities specified in the

first chapter.

1.2 Dependencies
This specification relies on the following other specifications:

◆ Java Object Serialization Specification

◆ Jini™ Lookup Service Specification

◆ Jini™ Discovery and Join Specification

1.3 Comments
Please direct comments to jini-comments@java.sun.com .
Page 1

1

Page 2 Jini™ Discovery Utilities Specification–1.0

Multicast Discovery Utility 2
Parties can obtain references to lookup services via the multicast discovery

protocols by making use of the LookupDiscovery class.

package net.jini.discovery;

import net.jini.core.lookup.ServiceRegistrar;
import java.io.IOException;

public final class LookupDiscovery
{

public static final String[] ALL_GROUPS = null;
public static final String[] NO_GROUPS = new String[0];

public LookupDiscovery(String[] groups)
throws IOException;

public void addDiscoveryListener(DiscoveryListener l);
public void removeDiscoveryListener(DiscoveryListener l);
public void discard(ServiceRegistrar reg);
public String[] getGroups();
public void setGroups(String[] groups)

throws IOException;
public void addGroups(String[] groups)

throws IOException;
public void removeGroups(String[] groups);
public void terminate();

}

Page 3

2

These classes and interfaces hide the details of the underlying protocol

implementation, but provide enough information to the programmer to be

flexible and useful.

2.1 The LookupDiscovery Class
The net.jini.discovery.LookupDiscovery class encapsulates the

operation of the multicast discovery protocols, including the automatic switch

from use of the multicast request protocol to the multicast announcement

protocol. Each instance of the LookupDiscovery class must behave as if it

operated independently of all other instances. The semantics of the methods on

this class are as follows.

◆ The constructor takes a set of groups in which the caller is interested as

parameter. This set is represented as an array, none of whose elements may

be null. The empty set is represented by an empty array, and no set

(indicating that all lookup services should be discovered) is indicated by a

null reference. The constructor may throw a java.io.IOException if a

problem occurs in starting discovery.

package net.jini.discovery;

import net.jini.core.lookup.ServiceRegistrar;
import java.util.EventListener;
import java.util.EventObject;

public class DiscoveryEvent extends EventObject
{

public DiscoveryEvent(Object source,
ServiceRegistrar[] regs);

public ServiceRegistrar[] getRegistrars();
}

public interface DiscoveryListener extends EventListener
{

public void discovered(DiscoveryEvent e);
public void discarded(DiscoveryEvent e);

}

Page 4 Jini™ Discovery Utilities Specification–1.0

2

◆ The addDiscoveryListener method adds a listener to the set of objects

listening for discovery events. Once a listener is registered, it is notified of

all lookup services discovered to date, and is then notified as new lookup

services are discovered or existing lookup services are discarded.

◆ The removeDiscoveryListener method removes a listener from the set

of objects listening for discovery events.

◆ The discard method removes a particular lookup service from the set that

is considered to already have been discovered. This allows the lookup

service to be discovered again; it is intended as a mechanism for

programmers to remove stale entries from the set, so that they do not have

to keep trying to contact lookup services that no longer exist.

◆ The getGroups method returns the set of groups that this

LookupDiscovery object is attempting to discover. If the set is empty, this

method returns the empty array, and if there is no set it returns the null

reference.

◆ The terminate method ends discovery. After this method has been called,

no new lookup services will be discovered.

Discovery usually starts as soon as an instance of this class is created, and ends

either when the instance is finalized prior to garbage collection, or when the

terminate method is called. However, if the empty set is passed to the

constructor, discovery will not be started until the setGroups method is called

with either no set or a non-empty set.

2.2 Useful Constants
The ALL_GROUPS constant can be passed to the LookupDiscovery
constructor and to the setGroups method to indicate that all lookup services

within range should be discovered. The NO_GROUPS constant indicates that no

groups should be discovered (implying that discovery should be postponed

until another call to setGroups).

If the getGroups method returns the empty array, that array is guaranteed to

be referentially equal to the NO_GROUPS constant (i.e. can be tested for equality

using the “==” operator).
Page 5

2

2.3 Changing the Set of Groups to Discover
Programmers may modify the set of groups to be discovered on the fly, using

the methods described below. In each case, a set of groups is represented as an

array of strings, none of whose elements may be null. The empty set is denoted

by the empty array, and no set (indicating that all lookup services should be

discovered) is indicated by null. Duplicated group names are ignored.

◆ The setGroups method changes the set of groups to be discovered to the

given set (or to no set, if indicated).

◆ The addGroups method augments the set of groups to be discovered. This

method throws a java.lang.UnsupportedOperationException if

there is no set to be augmented.

◆ The removeGroups method removes members from the set of groups to be

discovered. No exception is thrown if an attempt is made to remove a group

that is not currently in the set to be discovered. This method throws a

java.lang.UnsupportedOperationException if there is no set to

remove members from.

In cases where groups are removed from the set to be discovered, any already-

discovered lookup services that are no longer members of any of the groups to

be discovered are removed from the set maintained by the particular

LookupDiscovery object in use, and all listeners are notified that they have

been discarded.

If groups are added to the set to be discovered, the multicast request protocol

is used to discover lookup services for those groups. If there are no responses

to multicast requests, the LookupDiscovery object switches over to listening

for multicast announcements for those groups.

Since calling either the setGroups or addGroups method may result in the

multicast request protocol being started afresh, either method may throw a

java.io.IOException if a problem occurs in starting the protocol.

If any of the setGroups , addGroups , or removeGroups methods is called

after the terminate method has been called, it will throw a

java.lang.IllegalStateException .
Page 6 Jini™ Discovery Utilities Specification–1.0

2

2.4 The DiscoveryEvent Class
The net.jini.discovery.DiscoveryEvent class encapsulates the

information made available by the multicast discovery protocols. The sole new

method of the DiscoveryEvent class is getRegistrars , which returns an

array of lookup service registrars. The getSource method returns the

LookupDiscovery object that originated the given event.

2.5 The DiscoveryListener Interface
Objects that wish to register for notifications of multicast discovery events

must implement the net.jini.discovery.DiscoveryListener interface.

Its discovered method is called whenever new lookup services are

discovered, with an event containing a set of discovered lookup services

represented as an array. The discarded method is called whenever

previously-discovered lookup services have been discarded by the originating

LookupDiscovery object; the event contains a set of discarded lookup

services represented as an array. An event is delivered to listeners whenever

the discard method is called on a LookupDiscovery object, and also if a call

to either its removeGroups or setGroups method results in lookup services

being discarded.

2.6 Security and Multicast Discovery
When a LookupDiscovery object is created, the creator must have permission

to attempt discovery of each group specified in the set to discover, or to

attempt discovery of all groups if the set is null. This is also true for the

addGroups and setGroups methods on the LookupDiscovery class. If

appropriate permissions have not been granted, the constructor and these

methods will throw a java.lang.SecurityException .
Page 7

2

Discovery permissions are controlled in security policy files using the

net.jini.discovery.DiscoveryPermission permission.

The actions parameter is ignored. The following examples illustrate the use of

this permission:

Each declaration grants permission to attempt discovery of one name. A name

does not necessarily correspond to a single group:

◆ The name “* ” grants permission to attempt discovery of all groups.

◆ A name beginning with “*. ” grants permission to attempt discovery of all

groups that match the remainder of that name; for example, the name

“*.example.org ” would match a group named “foonly.example.org ”,

and also a group named “sf.ca.example.org ”.

◆ The empty name denotes the public group.

◆ All other names are treated as individual groups, and must match exactly.

A restriction of the Java™ Development Kit (JDK) 1.2 security model requires

that appropriate net.jini.discovery.DiscoveryPermission be granted

to the Jini software codebase itself, in addition to any codebases that may use

Jini software classes.

package net.jini.discovery;

import java.security.Permission;
import java.io.Serializable;

public final class DiscoveryPermission extends Permission
implements Serializable

{
public DiscoveryPermission(String group);
public DiscoveryPermission(String group, String actions);

}

all groups
only the “public” group

the group “foo ”
groups ending in “.sun.com ”

permission net.jini.discovery.DiscoveryPermission “*”;
permission net.jini.discovery.DiscoveryPermission “”;
permission net.jini.discovery.DiscoveryPermission “foo”;
permission net.jini.discovery.DiscoveryPermission “*.sun.com”;
Page 8 Jini™ Discovery Utilities Specification–1.0

2

2.7 Serialized Forms
The serialVersionUID of DiscoveryEvent is 5280303374696501479. The

serialized fields are:

◆ ServiceRegistrar[] regs - registrars to which this event applies

The serialVersionUID of DiscoveryPermission is -3036978025008149170.

There are no serialized fields.
Page 9

2

Page 10 Jini™ Discovery Utilities Specification–1.0

Protocol Utilities 3
The utilities presented below are intended for use by implementors of the

kinds of utilities detailed in the previous chapter, and for others who may need

to exercise more control over their usage of the Jini Discovery protocols.

3.1 Marshalling Multicast Requests
The OutgoingMulticastRequest class provides facilities for marshalling

multicast discovery requests into a form suitable for transmission over a

network. This class is useful for programmers who are implementing the

component of one of the discovery protocols that sits on a device that wishes to

join a djinn.

package net.jini.discovery;

import net.jini.core.lookup.ServiceID;
import java.io.IOException;
import java.net.DatagramPacket;

public class OutgoingMulticastRequest
{

public static DatagramPacket[]
marshal(int port, String[] groups, ServiceID[] heard)

throws IOException;
}

Page 11

3

This class cannot be instantiated, and its sole method, marshal , is static. This

method takes as parameter the port of the multicast response service to

advertise, along with a set of groups to look for and a set of service IDs from

which this system has already heard. The latter two arguments are represented

as arrays. No parameter may be null, and the arrays must have no members

that are null, and none should be duplicated (implementations are not required

to check for duplicated members).

This method returns an array of DatagramPacket objects; this array contains

at least one member, and will contain more if the request is not small enough

to fit in a single packet. Each such object has been fully initialized; it contains a

multicast request as payload, and is ready to send over the network.

In the event of error, this method may throw a java.io.IOException if

marshalling fails. In some instances, the exception thrown may be a more

specific subclass of this exception.

3.2 Unmarshalling Multicast Requests
The IncomingMulticastRequest class provides facilities for unmarshalling

multicast discovery requests into a form where the individual parameters of

the request may be easily accessed. This class is useful for programmers who

are implementing the component of one of the discovery protocols that works

with a lookup service implementation within a djinn.

package net.jini.discovery;

import java.io.IOException;
import java.net.DatagramPacket;
import java.net.InetAddress;
import net.jini.core.lookup.ServiceID;

public class IncomingMulticastRequest
{

public IncomingMulticastRequest(DatagramPacket dgram)
throws IOException;

public InetAddress getAddress();
public int getPort();
public String[] getGroups();
public ServiceID[] getServiceIDs();

}

Page 12 Jini™ Discovery Utilities Specification–1.0

3

This class may be instantiated using a java.net.DatagramPacket . The

payload of the DatagramPacket is assumed to contain nothing but the

marshalled discovery request. If the marshalled request should be corrupt,

either a java.io.IOException or a

java.lang.ClassNotFoundException will be thrown. In some such

instances, a more specific subclass of either exception may be thrown which

will give more detailed information.

The methods of this class are mostly self-explanatory.

◆ The getAddress method returns the IP address of the host to which the

caller should respond.

◆ The getPort method returns the TCP port number on that host to which

the caller should connect.

◆ The getGroups method returns the groups in which the originator of this

request is interested. The array returned by this method may be of zero

length; none of its fields will be null; and items may or may not be

duplicated.

◆ The getServiceIDs method returns the set of service IDs of lookup

services from which the originator has already heard. The array returned by

this method may have length equal to zero, but none of its fields will be

null, and items may or may not be duplicated.

◆ The equals method returns true if both instances have the same address,

port, groups, and service IDs.
Page 13

3

3.3 Marshalling Multicast Announcements
The OutgoingMulticastAnnouncement class encapsulates the details of

announcing a lookup service.

The sole method of this class, marshal , is static. It takes as parameters the

service ID of the lookup service being advertised, the locator via which unicast

discovery of that lookup service may be performed, and the names of the

groups of which that service is a member. If a problem occurs with marshalling

the request, a java.net.IOException will be thrown.

This method returns an array of DatagramPacket objects, each of which has

been initialized such that it is ready to be multicast.

package net.jini.discovery;

import java.io.IOException;
import java.net.DatagramPacket;
import net.jini.core.lookup.ServiceID;
import net.jini.core.discovery.LookupLocator;

public class OutgoingMulticastAnnouncement
{

public static DatagramPacket[]
marshal(ServiceID id, LookupLocator loc, String[] groups)
throws IOException;

}

Page 14 Jini™ Discovery Utilities Specification–1.0

3

3.4 Unmarshalling Multicast Announcements
The IncomingMulticastAnnouncement class permits access to the fields of

a multicast announcement datagram that has been received.

The constructor takes a datagram packet as argument. If it cannot decode the

contents of the datagram packet, it will throw either a

java.lang.ClassNotFoundException or a java.io.IOException . The

getServiceID method returns the service ID of the originator. The

getLocator method returns the locator via which unicast discovery of the

originator may be performed. The getGroups method returns the groups

represented by the originator; the array returned by this method may be null,

will not be empty, and will contain no null elements. Elements may or may not

be duplicated. The equals method returns true if both instances have the

same service ID.

package net.jini.discovery;

import java.io.IOException;
import java.net.DatagramPacket;
import net.jini.core.lookup.ServiceID;
import net.jini.core.discovery.LookupLocator;

public class IncomingMulticastAnnouncement
{

public IncomingMulticastAnnouncement(DatagramPacket p)
throws IOException;

public ServiceID getServiceID();
public LookupLocator getLocator();
public String[] getGroups();

}

Page 15

3

3.5 Easy Access to Constants
The Constants class provides easy access to some constants used during the

lookup discovery process.

The value of the discoveryPort variable is the UDP port number over which

the multicast request and announcement protocols operate, and also the TCP

port number over which the unicast discovery protocol operates by default.

The getRequestAddress and getAnnouncementAddress methods return

the addresses of the multicast groups over which multicast request and

multicast announcement take place, respectively. These methods may throw a

java.net.UnknownHostException if called in a circumstance under which

multicast address resolution is not permitted.

package net.jini.discovery;

import java.net.InetAddress;
import java.net.UnknownHostException;

public class Constants
{

public static final short discoveryPort = 4160;
public static final InetAddress getRequestAddress()

throws UnknownHostException;
public static final InetAddress getAnnouncementAddress()

throws UnknownHostException;
}

Page 16 Jini™ Discovery Utilities Specification–1.0

3

3.6 Marshalling Unicast Discovery Requests
The OutgoingUnicastRequest class provides facilities for marshalling

unicast discovery requests into a form suitable for transmission over a

network.

This class cannot be instantiated, and its only public method is static.

3.7 Unmarshalling Unicast Discovery Requests
The IncomingUnicastRequest class provides facilities for unmarshalling

unicast discovery requests.

Since, under the current version of the unicast discovery protocol, no useful

information is transmitted in a request, this class has no public methods.

package net.jini.discovery;

import java.io.IOException;
import java.io.OutputStream;

public class OutgoingUnicastRequest
{

public static void marshal(OutputStream str)
throws IOException;

}

package net.jini.discovery;

import java.io.InputStream;
import java.io.IOException;

public class IncomingUnicastRequest
{

public IncomingUnicastRequest(InputStream str)
throws IOException;

}

Page 17

3

3.8 Marshalling Unicast Discovery Responses
The OutgoingUnicastResponse class provides marshalling facilities for

unicast discovery responses.

This class may not be instantiated. The sole static method, marshal , writes the

given registrar proxy to the given output stream, and indicates that it is a

member of the given set of groups (which is represented as an array which

should have no null members, but may contain duplicates). If a problem occurs

during marshalling or writing, it throws a java.io.IOException .

package net.jini.discovery;

import java.io.IOException;
import java.io.OutputStream;
import net.jini.core.lookup.ServiceRegistrar;

public class OutgoingUnicastResponse
{

public static void marshal(OutputStream s,
ServiceRegistrar reg
String[] groups)

throws IOException;
}

Page 18 Jini™ Discovery Utilities Specification–1.0

3

3.9 Unmarshalling Unicast Discovery Responses
The IncomingUnicastResponse class allows a caller to unmarshal a unicast

discovery response.

The constructor unmarshals a response from an input stream, and throws an

exception if the reading or the unmarshalling fails. The getRegistrar
method returns the unmarshalled registrar proxy. The getGroups method

returns the set of groups of which the given lookup service is a member. This

set is represented as an array of strings, with no null members (duplicate

members may appear, however). The equals method returns true if both

instances have the same registrar.

package net.jini.discovery;

import java.io.IOException;
import java.io.InputStream;
import net.jini.core.lookup.ServiceRegistrar;

public class IncomingUnicastResponse
{

public IncomingUnicastResponse(InputStream s)
throws IOException, ClassNotFoundException;

public ServiceRegistrar getRegistrar();
public String[] getGroups();

}

Page 19

3

Page 20 Jini™ Discovery Utilities Specification–1.0

	Jini™ Discovery Utilities Specification
	The Jini™ technology is a Java™ platform-centric d...
	Contents
	1. Introduction 1
	1.1 Overview 1
	1.2 Dependencies 1
	1.3 Comments 1

	2. Multicast Discovery Utility 3
	2.1 The LookupDiscovery Class 4
	2.2 Useful Constants 5
	2.3 Changing the Set of Groups to Discover 6
	2.4 The DiscoveryEvent Class 7
	2.5 The DiscoveryListener Interface 7
	2.6 Security and Multicast Discovery 7
	2.7 Serialized Forms 9

	3. Protocol Utilities 11
	3.1 Marshalling Multicast Requests 11
	3.2 Unmarshalling Multicast Requests 12
	3.3 Marshalling Multicast Announcements 14
	3.4 Unmarshalling Multicast Announcements 15
	3.5 Easy Access to Constants 16
	3.6 Marshalling Unicast Discovery Requests 17
	3.7 Unmarshalling Unicast Discovery Requests 17
	3.8 Marshalling Unicast Discovery Responses 18
	3.9 Unmarshalling Unicast Discovery Responses 19

	Introduction

	1.1 Overview
	1.2 Dependencies
	1.3 Comments
	Multicast Discovery Utility
	2

	2.1 The LookupDiscovery Class
	2.2 Useful Constants
	2.3 Changing the Set of Groups to Discover
	2.4 The DiscoveryEvent Class
	2.5 The DiscoveryListener Interface
	2.6 Security and Multicast Discovery
	2.7 Serialized Forms
	Protocol Utilities
	3

	3.1 Marshalling Multicast Requests
	3.2 Unmarshalling Multicast Requests
	3.3 Marshalling Multicast Announcements
	3.4 Unmarshalling Multicast Announcements
	3.5 Easy Access to Constants
	3.6 Marshalling Unicast Discovery Requests
	3.7 Unmarshalling Unicast Discovery Requests
	3.8 Marshalling Unicast Discovery Responses
	3.9 Unmarshalling Unicast Discovery Responses

