
Open GL
A Crash Course

Part 2

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Selected Topics:

• Display Lists
• Alpha blending
• Shadows (projection and blending)
• Mirrors (stencil buffer)
• Scene Antialiasing (accumulation buffer)
• Texturing

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Display Lists

Why are they faster?

• Static, pre-cached list
• Pre-calculation (states, matrices)
• Use hardware most efficiently (texture

memory
• Maintained server side

Typical applications

• Encapsulate repeated state changes
• Store repeated models and transforms
• Texturing definitions

General Usage

listIndex = glGenLists(1);
glNewList(listIndex,GL_COMPILE);

//GL commands to be stored
glEndList();
…
glCallList(listIndex);

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Advanced Example

• As with direct OpenGL calls, status is
commulative

• We might want to save/restore state

glNewList(listIndex,GL_COMPILE);
glPushMatrix();
glPushAttrib(GL_CURRENT_BIT);
glColor3f(1.0,0.0,0.0);
glTranslatef(1.5,0,0);
glBegin(GL_POLYGON);

glVertex3f(1.0,0.0,0.0);
glVertex3f(1.0,1.0,0.0);
glVertex3f(1.0,0.0,1.0);

glEnd();
glPopAttrib();
glPopMatrix();

glEndList();

Other notes

• Can call lists from within lists
• Worth using for non repeated complex

geometry, etc.

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Alpha Blending

Some Uses

• Make transparent objects
• Drawing shadows
• Billboarding

Implementation

glEnable(GL_BLEND)
glDisable(GL_BLEND)
glBlendFunc(src_factor,dst_factor)

Source/Dest Color: (RS,GS,BS,AS)/(RD,GD,BD,AD)

Source/Dest Factor: (SR,SG,SB,SA)/(DR,DG,DB,DA)

Gives: (RSSR+RDDR, GSSG+GDDG, BSSB+BDDB, ASSA+ADDA)

Factor Type Computed Factor
GL_ZERO (0,0,0,0)

GL_ONE (1,1,1,1)

GL_SRC_ALPHA (AS,AS,AS,AS)

GL_ONE_MINUS_SRC_ALPHA (1,1,1,1)-(AS,AS,AS,AS)

GL_DST_ALPHA (AD,AD,AD,AD)

GL_ONE_MINUS_DST_ALPHA (1,1,1,1)- (AD,AD,AD,AD)

GL_DST_COLOR (src) (RD,GD,BD,AD)

GL_SRC_COLOR (dst) (RS,GS,BS,AS)

GL_SRC_ALPHA_SATURATE (src) (f,f,f,1);f=min(AS,1-AD)

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Some Examples

Solid background with a 20% opaque
image in front.

• Draw background using GL_ONE (source) and
GL_ZERO (dest)

• Draw the transparent image (with alpha of 0.20)
using GL_SRC_ALPHA (source) and
GL_ONE_MINUS_SRC_ALPHA (dest)

Mix three images equally

• Draw each image (with alpha of 0.33333) using
GL_SRC_ALPHA (source) and GL_ONE (dest)

Transparent red color filter

• Draw background using GL_ONE (source) and
GL_ZERO (dest)

• Draw filter image (1.0,0.1,0.1,1.0) using
GL_ZERO (source) and GL_SRC_COLOR
(destination)

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

3-D Issues

• Order to draw objects in?
• Depth buffer testing and setting?
• Multiple transparent objects?

Solutions

• Turn on depth testing

glEnable(GL_DEPTH_TEST)

• Draw all opaque objects first
• Make depth buffer read only

glDepthMask(GL_FLASE)

• Draw transparent objects in order (back
to front)

• Make depth buffer read/write

glDepthMask(GL_TRUE)

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Shadows:

• OpenGL has no built-in shadows
• There are several techniques
• Easiest: Redraw each shadowed primitive

with a projection matrix in a ‘shadow’
color

• Cast a ray from light, through vertex S,
and intersect the shadow plane, S’

• Redraw object in a ‘shadow’ color using
a matrix that maps S to S’

• Repeat for each light and each shadow
plane

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Mathematical Details

++
−

++
−

++
−

→

++
−
−
−

=

−
−

−

=

⋅+⋅+⋅
−=

⋅+⋅+⋅
−=

=+⋅+⋅+⋅

=
=+++

=

1

0

000

000

000

'

'

'

'

'

0)(

),,(

0

),,(

czbyax

ds
czbyax

ds
czbyax

ds

czbyax

ds

ds

ds

s

s

s

s

cba

d

d

d

s

s

s

s

scsbsa
dS

S

scsbsa
d

dscsbsa

sssS

dczbyax

sssS

z

y

x

z

y

x

w

z

y

x

w

z

y

x

zyx

zyx

zyx

zyx

zyx

α

α

αα

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Pseudo Code

Set object material/color
Draw object

Turn on alpha blending
Change depth buffer to read only
Change material to black (with alpha)

Push Matrix
Translate light away from origin
Apply shadow matrix
Translate light to origin
Redraw object
Pop Matrix

Turn of alpha blending
Restore depth buffer to read/write

Details

• Use glMultMatrix
• Repeat for each light source
• Repeat for each shadow plane

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Mirrors

• OpenGL has no built-in reflection
capabilities

• There are several techniques
• Easiest: Reflect the world around the mirror

plane and redraw it!

• Add transform to reflect about mirror plane
• Draw the world
• Remove transform and draw world again

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Issues

Correct lighting?

• Must define lights after adding mirror
transform

• Must redefine lights after removing
transform

Non-infinite mirror?

• Draw the mirror surface into the
stencil buffer

• Redraw the mirrored world through
the stencil buffer

Not a fully reflecting surface?

• Draw stenciled, mirrored world
• Alpha blend mirror surface on top

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Stencil buffer

• Used to restrict drawing to certain
portions of the screen

• Two properties can be configured to
produce various operations:

• The pass/fail criteria
• How to modify on pass/fail

• In our case:
• Setup to always pass test, and put 1

into pixels where the test occurs
• Draw mirror surface
• Setup to pass where stencil buffer is

1, and not modify on pass/fail
• Draw mirrored world

Clearing

glClearStencil(0)
glClear(GL_STENCIL_BUFFER_BIT)

Enabling

glEnable(GL_STENCIL_TEST)

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Configuring

Setting the pass/fail criteria:

glStencilFunc(func, ref, mask)

The func argument specifies the test between ref value and the stencil
buffer value for the pixel in question. It can be:

GL_NEVER, GL_ALWAYS, GL_LESS, GL_GREATER,
GL_EQUAL, GL_LEQUAL, GL_GEQUAL

The mask is bitwise ANDed with ref and the stencil value to achieve
multiple stencil planes

Defining how to modify the buffer on pass/fail:

glStencilOp(fail, zfail, zpass)

The fail argument specifies what to do if the stencil test fails. If it
passes, then zfail defines the action if the depth test is failed. If the
depth test also passes then zpass is used. These actions can be:

GL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR, GL_DECR

Example

Restrict drawing to where stencil is non zero value.

glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_GREATER, 0, 0xffffffff);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

//Draw some things

glDisable(GL_STENCIL_TEST);

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Partial Code Fragment

glDisable(GL_DEPTH_TEST);
glColorMask(GL_FALSE,GL_FALSE,GL_FALSE,GL_FALSE);

glClearStencil(0)
glClear(GL_STENCIL_BUFFER_BIT)

glEnable(GL_STENCIL_TEST);

//Replace buffer with 1’s wherever we draw

glStencilFunc(GL_ALWAYS, 1, 0xffffffff);
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);

drawMirrorSurface();

glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glEnable(GL_DEPTH_TEST);

//Now draw only where the 1’s are

glStencilFunc(GL_EQUAL, 1, 0xffffffff);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

glPushMatrix();
 glScalef(1.0, -1.0, 1.0);
 setLightSourcePositions();
 drawWorld();
glPopMatrix();

glDisable(GL_STENCIL_TEST);

setLightSourcePositions();

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

drawMirrorSurface();
glDisable(GL_BLEND);

drawWorld();

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Scene Antialiasing

• OpenGL does not automatically perform full
scene antialiasing

• Can do this using ‘jittering’
• Redraw the entire scene several times using

different fractional pixel offsets in x and y
each time

• Blend all the images together into one
• Use the accumulation buffer to collect these

images and blend them (usually higher
precision than the color buffer)

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Usage

glClearAccum(0.0, 0.0 , 0.0, 0.0);
glClear(GL_ACCUM_BUFFER_BIT);

glAccum(op,value);

The op defines the operation, value is used differently
depending upon the operation. op can be one of GL_ACCUM,
GL_LOAD, GL_RETURN, GL_ADD, GL_MULT.

GL_LOAD – Loads the buffer with value times RGBA values
in the current color buffer.

GL_ACCUM – Same, but adds to the buffer, rather than replacing.

GL_RETURN – Copies the buffer times value into the current
color buffer.

Jittering

• Adjust our projection matrix to shift the
viewpoint by a fractional pixel in x and y

• Optimum jittering values have been
computed depending upon the number of
jitters

• See Chapter 10 for accPerspective()
and jN[] (code linked on web page)

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Pseudo Code

Clear the accum buffer

Loop i from 0 to N

Clear the color and depth buffers

accPerspective(FOV,ASPECT,NZ,FZ,
jN[i].x, jN[i].y, 0, 0, 1)

Draw the world

glAccum(GL_ACCUM, 1.0/N)

Endloop

glAccum (GL_RETURN,1.0);

***Don’t forget to ask GLUT for your buffers:

glutInitDisplayMode(bit1 | bit2 | …)

Bits:

GLUT_SINGLE, GLUT_DOUBLE, GLUT_RGB,
GLUT_ACCUM, GLUT_DEPTH, GLUT_STENCIL

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Texture Mapping

• Create a texture object
• Indicate how the texture is applied to pixels
• Specify its texture data
• Enable texture mapping
• Draw the scene including geometric and

texture coordinates

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Creating a texture object

To requests a list of handles to n new texture objects:

glGenTextures(n,&texIndices[0])

Each one must be initialized. The following call initializes
the new texture to the default states:

glBindTexture(GL_TEXTURE_2D,texIndex)

Subsequent texture state calls will affect, and be stored
with, the currently bound texture.

Binding a texture already initialized will make it current,
and its states can be edited.

Setting the Texture States

First define what happens if s or t fall outside of [0,1].
GL can repeat the texture, or clamp to the border color:

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T, GL_CLAMP);

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Setting the Texture States (cont’d)

Next we define how to filter the texture when the texture
pixels are larger than screen pixels:

glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_MAG_FILTER, magFilter);

magFilter can be GL_NEAREST, GL_LINEAR

Finally we define how to filter the texture when the
texture pixels are smaller than screen pixels:

glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_MIN_FILTER, minFilter);

magFilter can be GL_NEAREST, GL_LINEAR,
GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST,
GL_LINEAR_MIPMAP_LINEAR

Storing the texture image

To actually specify the texture image, we call to GLU to
load an image array into our texture object, and
simultaneously create mipmaps.

gluBuild2DMipmaps(GL_TEXTURE_2D,GL_RGB,
width, height, GL_RGB,
GL_UNSIGNED_BYTE, arrayPtr);

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Setting the Texturing Function

Call to the following to decide how to apply the texture
image to polygon surfaces (global):

glTexEnvf(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE, mode)

Where mode is one of GL_DECAL, GL_REPLACE,
GL_MODULATE, GL_BLEND.

The mode, and the texture’s internal format (e.g.
GL_RGB) decide how the texture is applied.

To get this looking good with lighting, use RBG textures,
with GL_MODULATE to texture polygons drawn with
white diffuse material properties.

Drawing

At draw time: enable texturing, set the texture function,
bind the desired texture, and specify texture coordinates
with your vertices.

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

Example Code Fragment

// Read texture into an RGB uint array (texData)

glGenTextures(1,&texIndex);
glBindTexture(GL_TEXTURE_2D, texIndex);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

 GL_LINEAR_MIPMAP_LINEAR);

glPixelStorei(GL_UNPACK_ALIGNMENT,1);
gluBuild2DMipmaps(GL_TEXTURE_2D, GL_RGB, width, height,

GL_RGB, GL_UNSIGNED_BYTE, texData);

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE)

glEnable(GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D,texIndex); //Redundant, this is
// already currently bound

// Set to a white, diffuse material

glBegin(GL_TRIANGLES);
glTexCoord2fv(&t[0][0]);
glNormal3fv(&n[0][0]);
glVertex3fv(&v[0][0]);

glTexCoord2fv(&t[1][0]);
glNormal3fv(&n[1][0]);
glVertex3fv(&v[1][0]);

glTexCoord2fv(&t[2][0]);
glNormal3fv(&n[2][0]);
glVertex3fv(&v[2][0]);

glEnd();
glDisable(GL_TEXTURE_2D);

Produced by PStill written by Frank Siegert, http://www.wizards.de/pstill.html
This message will go away in the registered version - see ’registration.pdf’

