COS 341, Handout No. 7 November 16, 1998

Solutions to Midterm

Problem 1 The probability space is $U = \{H, T\}^n$. Consider the random variable X where, for each $u \in U, X(u)$ is equal to $7^{k(u)}$ where k(u) is the number of HEADs in u. Then the answer we seek is

$$E(X) = |U|^{-1} \sum_{u \in U} X(u)$$

= $2^{-n} \sum_{0 \le j \le n} \sum_{u, k(u) = j} 7^{j}$
= $2^{-n} \sum_{0 \le j \le n} {n \choose j} 7^{j}$
= $2^{-n} f(7),$

where $f(x) = (1+x)^n = \sum_{0 \le j \le n} {n \choose j} x^j$. This immediately gives $E(X) = 4^n$.

Problem 2 This is equivalent to counting the number of ways the tycoon can give away n dollars to his six children without the \$10,000 requirement, where n = 1,000,000 - 60,000 = 940,000. Thus the number of ways is equal to

$$\binom{n+6-1}{6-1} = \binom{940,005}{5}.$$

Problem 3 (a) The answer A is equal to

$$\sum_{0 \le i \le n} {n \choose i} \frac{1}{i+1} = \sum_{0 \le i \le n} \frac{n!}{i!(n-i)!} \frac{1}{i+1}$$

$$= \sum_{0 \le i \le n} \frac{n!}{(i+1)!(n-i)!}$$

$$= \frac{1}{n+1} \sum_{0 \le i \le n} \frac{(n+1)!}{(i+1)!((n+1)-(i+1))!}$$

$$= \frac{1}{n+1} (\sum_{0 \le i \le n+1} {n+1 \choose i} - 1)$$

$$= \frac{1}{n+1} (2^{n+1} - 1).$$

(b)

$$\sum_{0 \le i \le n} \binom{n}{i} \frac{1}{i+2} = \sum_{0 \le i \le n} \binom{n}{i} \frac{(i+2)-1}{i+1} \frac{1}{i+2}$$

$$= \sum_{0 \le i \le n} {n \choose i} \left(\frac{1}{i+1} - \frac{1}{(i+1)(i+2)}\right)$$
$$= A - \sum_{0 \le i \le n} {n \choose i} \frac{1}{(i+1)(i+2)}.$$

Now,

$$\sum_{0 \le i \le n} \binom{n}{i} \frac{1}{(i+1)(i+2)} = \sum_{0 \le i \le n} \frac{n!}{(i+2)!(n-i)!}$$
$$= \frac{1}{(n+1)(n+2)} \sum_{0 \le i \le n} \frac{(n+2)!}{(i+2)!((n+2)-(i+2))!}$$
$$= \frac{1}{(n+1)(n+2)} \left(\sum_{0 \le i \le n+2} \binom{n+2}{i} - 1 - \binom{n+2}{1}\right)$$
$$= \frac{1}{(n+1)(n+2)} (2^{n+2} - n - 3).$$

This leads to the answer

$$\frac{1}{n+1}(2^{n+1}-1) - \frac{1}{(n+1)(n+2)}(2^{n+2}-n-3).$$

Problem 4 (a)We give a combinatorial proof of

$$\sum_{0 \le i \le n} \binom{n}{i} \binom{n}{n-i} = \binom{2n}{n}.$$

The right-hand side is the number of size-*n* subsets of $\{1, 2, \dots, 2n\}$, which can be counted by summing up N_i , where N_i is the number of such subsets with *i* elements chosen from $\{1, 2, \dots, n\}$ and n-i elements chosen from $\{n+1, \dots, 2n\}$. But this is exactly the expression for the left-hand side. (b)

$$\begin{split} \sum_{0 \le i < j \le n} \binom{n}{i} \binom{n}{j} &= \frac{1}{2} \left(\sum_{0 \le i \le n, 0 \le j \le n} \binom{n}{i} \binom{n}{j} - \sum_{0 \le i \le n} \binom{n}{i} \binom{n}{i} \right) \\ &= \frac{1}{2} \left(\left(\sum_{0 \le i \le n} \binom{n}{i} \right)^2 - \sum_{0 \le i \le n} \binom{n}{i} \binom{n}{n-i} \right) \\ &= \frac{1}{2} \left(2^{2n} - \binom{2n}{n} \right), \end{split}$$

where we have used (a) in the last step.