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Some Probability Theory

A probability space 2 = (U, p) consists of a finite set U, and a function p : U — [0, 1]

satisfying >, e p(u) = 1. A random variable X is a real-valued function on U.

If X,Y are random variables, then X + Y is the random variable defined by (X +
Y)(u) = X(u)+Y (u). And XY is the random variable defined by (XY)(u) = X (u)-Y (u).
A constant ¢ can be regarded as a random variable taking on the value ¢ for all u € U,
and we use the same symbol ¢ to denote that random variable, when there is no danger

of confusion.

We define E(X) = 3 ,cp p(u) X (u), and Var(X) = E(Z), where Z = (X — E(X))?.
(Note that E(X) is a real number ¢, and for all u € U, the random variable X — E(X) has
value X (u)—t, the random variable Z has value Z(u) = (X (u)—t)?. Clearly Var(X) > 0.)
The standard deviation o(X) is defined to be v/Var(X). Intuitively, the value E(X) tells
you what the average value of X you can expect, if you perform many many experiments;
the variance gives you some idea on how close to E(X) you expect to see the typical value

of X fall in these experiments.

If X;,1 <i<m are random variables in {2 and ¢; are real numbers, then the random
variable W' = 37 ;. ¢;X; is by definition W(u) = >>,<;<,, ¢iXi(u). The following

important formula was derived in class.

Linearity of Expected Value

As an example to illustrate all these discussions, let Q@ = (U,p), where U =

{a,b,c,d,e, f,g,h} and p(a) = 0.2,p(b) = 0.13,p(c) = 0.17,p(d) = 0.1,p(e) = 0.1,p(f) =
0.2,p(g) = 0.04,p(h) = 0.06. Let X be the random variable on Q with X(a) =1, X(b) =
X(c)=3,X(d)=X(e) = X(f) =4,X(9) = X(h) =9. Then by defintion

E(X) = p(a)X(a) +p0)X(b) + -+ p(h) X (h).
Let t = E(X) denote the above value. Then by definition

Var(X) = p(a)(X(a) = t)* + p(b)(X(b) = t)* + -~ + p(h) (X (h) — 1)*.



The numerical values of E(X) and Var(X) can be calculated straightforwardly from these
formulae. We shall not do the calculation here. Rather, we calculate them in a slightly

different way.

Clearly, Pr{X = 1} = p(a) = 0.2, Pr{X = 3} = p(b) + p(c) = 0.3, Pr{X = 4} =
p(d) + p(e) + p(f) = 0.4, and Pr{X =9} = p(g9) + p(h) = 0.1.

Now, by definition, E(X) = > ,cyp(u)X(u). When X takes on only nonnegative

integer values, we can rewrite it as

E(X) =) Pr{X = k}k. (1)

k>0

Similarly, from the definition of Var(X), we can derive

Var(X) =Y Pr{X =k}(k — E(X))>. (2)
k>0

Thus, for the example above,
E(X)=02-14+03-3+04-4+0.1-9=3.6,
and
Var(X) =0.2-(1-3.6)*+0.3-(3—3.6)>+0.4-(4—3.6)2+0.1-(9 - 3.6)% = 4.440.
Also we have o(X) =v4.440 =2.1---
A useful formula

Var(X) = B(X?) - (B(X))*. 3)

Proof Let t = E(X) and Z = (X — t)2. Note that Z(u) = (X — t)*(u) = (X(u))? —
2t X (u) +1t2 for all u € U. Thus (X —t)? = X2 —2tX + 2 expresses the random variable Z
as a linear combination of the random variables X2, X. By the linearity of the expected
value, we have E(Z) = E(X?) — 2tE(X) + t? = E(X?) — 2, which proves (3). O

Generating Functions

We have seen earlier that generating functions are useful for evaluating sums such
as Y r—024.. (1) We now demonstrate that the generating functions are also useful for
evaluating E(X) and Var(X), when X take on only nonnegative integer values. Take any
such X, let pr = Pr{X = k}. Define

F(z) = Zpkxk.

k>0



Then
Fl(z) = kppa*,

k>0
and
F'(z)=> k(k - Dprat2.
k>0
Thus,
F/(l) = Z k‘pk,
k>0

and

F'(1) = Y k(k — Dpy.

k>0
It follows that

E(X) =3 kpi = F/(1). (4)
k>0

And

E(X?) = > K

k>0
= D (k(k—1)+Fk)px
k>0
= Y k(k—Dpr+ > kpe
k>0 k>0

= F'(1)+ F'(1).

By (3) this gives
Var(X)=F"(1) + F'(1) — (F'(1))% (5)

As an application, consider the example of tossing a fair coins n times, and let X be the
number of Heads in the sequence. Then py, = (7)/2" and F(z) = 3 pra® = (1 +z)"/2™.
Clearly, F'(z) = n(1 +2)""1/2" and F"(z) = n(n — 1)(1 + 2)"~2/2". Thus F'(1) = n/2
and F"(1) = n(n—1)/4. From (5) we have Var(X) = n(n—1)/4+ (n/2) — (n?/4) = n/4.



