COS 341, Fall 1998 October 26, 1998 Handout No. 4

Last Year's Midterm Exam

Problem 1[30 points] In the very first class of the course, we discussed the *covering* problem. We showed that an $8 \ge 8$ chessboard (consisting of 64 squares with unit-length sides) can be covered perfectly with dominos; but if we cut off two opposite corners from the chessboard, then the resulting chessboard can no longer be covered perfectly with dominos.

For this exam, consider a 9 x 9 board (consisting of 81 squares with unitlength sides). Clearly, it can be covered perfectly with *triminos*, where a trimino is a piece of dimension $1 \ge 3$ or $3 \ge 1$.

Question: Prove that if we cut off any three (out of four) corners of the $9 \ge 9$ board, the resulting board cannot be covered perfectly with triminos. Give a rigorous argument.

Problem 2 [30 points] Let n be any positive integer. (a) Evaluate

$$\sum_{1 \le k \le n} \binom{2n}{2k-1} 2^{2k-1}.$$

(b) Evaluate

$$\sum_{1 \le k \le n} \binom{2n}{2k-1} k 2^k.$$

Give your answers in closed form.

Problem 3 [30 points] Solve the following recurrence relation for a_n : (a)

$$a_0 = 3$$

 $na_n = (n-1)a_{n-1} + 1$

for $n \ge 1$.

(b)

$$a_0 = 3$$

 $na_n = (n-2)a_{n-1} + 1$

for $n \ge 1$.

Your answers must be in closed form.