
Spanner
November 2025

Concurrency Control Recap

● Last precept: 2-phase locking (2PL)

● 2PL:

○ Rule: Do not acquire a lock once any lock has been released

○ Growing Phase: acquire shared (read) locks and exclusive (write) locks

○ Shrinking Phase: release locks

How can we achieve strict serializability and scalability?

● Shard the keyspace: servers maintain a subset of the keyspace

● Use 2PL to handle concurrent transactions

● Use 2-phase commit (2PC) to achieve atomic commit of transactions

● How does 2PC handle server failures?

○ It doesn’t!

● Replicate each shard using Paxos!

Toy example:

2PL

2PC

Paxos

Shards

Client

One of the shards would be transaction coordinator for 2PC

Putting it together in a real system: Spanner

● Observation: reads are much more frequent than writes

○ Facebook’s TAO sees 500 reads per 1 write.

○ Google Ads (F1) on Spanner from 1 DC saw 51.5B reads in a 24 hour period

○ Many reads are across shards

● Takeaway: Make read-only transactions very efficient

● Two goals:

○ Lock-free read-only transactions

○ Non-blocking, but stale (not strictly serializable), read-only transactions

Spanner

● Main idea: use real-time for ordering transactions by finding a maximum

clock skew

● TrueTime

○ TrueTime.now()

■ Returns a range [a,b] where a is the earliest possible time, and b is latest

○ TrueTime.after(t)

■ True if the current time is definitely after t

○ TrueTime.before(t)

■ True if the current time is definitely before t

General transactions

● General transactions are transactions that can contain reads and writes

together, or just read or write

● Similar to 2PL+2PC+Paxos scheme above, but use TrueTime to determine

commit timestamps for transactions

● Each server maintains tsafe where all transactions with commit timestamp si <

tsafe are committed and can be read.

○ tsafe means: “I guarantee that no future transactions will commit at timestamps ≤ tsafe.”

Example

txn 1:

x = r(a)
y = r(z)
x = x + y

w(z = x)

Client

Sa-m

Sn-z

s_lock(z)

Example

txn 1:

x = r(a)
y = r(z)
x = x + y

w(z = x)

Client

Sa-m

Sn-z

s_lock(a)

x = 1

y = 2

x = x + y = 3

w(z = 3)

s_lock(a)
wait(t_safe>s_t1)
unlock()

s_lock(z)
x_lock(z)
wait(t_safe>s_t1)
unlock()

Example

txn 1:

x = r(a)
y = r(z)
x = x + y

w(z = x)

Client

Sa-m

Sn-z

x = 1

y = 2

x = x + y = 3

w(z = 3)

Now let’s walk through the transaction process step

by step

General transactions (steps)

General transactions are driven by the client:

1. Client issues reads to the leader of each shard group

2. Leader acquires read locks and returns the most recent value to the client

3. Client locally performs the writes

4. Client chooses a coordinator from the shard leaders

5. Client initiates the commit protocol by sending a commit message to each

leader with the buffered writes and the coordinator ID

6. Leaders execute the commit protocol

7. Client waits for the commit message from the coordinator

General transaction (commit protocol)

1. All shard leaders acquire write locks

2. Non-coordinators

a. Choose a prepare timestamp > all previous local timestamps

b. Log the prepare record via Paxos

c. Notify the coordinator of the prepare timestamp

3. Coordinator

a. Waits for all prepare timestamps

b. Chooses a commit timestamp that is

i. >= prepare timestamps of all other non-coordinators

ii. > any write timestamps it has applied

iii. > its current TT.now().latest

c. Logs commit record via Paxos

d. Wait until TrueTime.after(commit timestamp)

e. Sends commit timestamp to replicas, non-coordinators, and the client

4. All apply the transaction at commit timestamp and release the locks

Lock-free read-only transactions

1. Client chooses the commit timestamp (sread) to be TrueTime.now.latest()

2. Shard leaders wait until sread < tsafe

The shard waits until it’s sure that all transactions that could affect sread have

already committed.

3. Read data as of the time sread

4. Return data.

wait(t_safe > s_r)

Read-Only Example

txn 1:

x = r(a)
y = r(z) Client

Sa-m

Sn-z

s_r = TT.now()

s_r = s_r.latest

wait(t_safe > s_r)

ret = v(a,s_r)

Non-blocking (BUT STALE) - Read-Only Transactions

txn 1:

x = r(a)
y = r(z) Client

Sam

Snz

ret = v(a,s_r)

Summary of Spanner

● Sharded datastore where shards are Paxos groups

● Transactions use Client-driven 2PL

● Commit Wait: 2PC with waiting for the commit time to have passed and be

safe to read

	Slide 1: Spanner
	Slide 2: Concurrency Control Recap
	Slide 3: How can we achieve strict serializability and scalability?
	Slide 4: Toy example:
	Slide 5: Putting it together in a real system: Spanner
	Slide 6: Spanner
	Slide 7: General transactions
	Slide 8: Example
	Slide 9: Example
	Slide 10: Example
	Slide 11
	Slide 12: General transactions (steps)
	Slide 13: General transaction (commit protocol)
	Slide 14: Lock-free read-only transactions
	Slide 15: Read-Only Example
	Slide 16: Non-blocking (BUT STALE) - Read-Only Transactions
	Slide 17: Summary of Spanner

