

Consistency

November 2025

Strict Serializability

- Transactions: operations that span multiple objects (e.g., keys in KV store)
 atomically commit (or abort).
- Total order: There exists some legal total ordering of transactions.
 - Legal (intuitively defined for strict serializability): in the total ordering, read operations "see" the latest write operation.
- Preserves real-time commit order: if txn A commits before txn B begins, then
 txn A occurs before txn B in the total order.
 - Write ops in a committed txn are visible to all future txns' read ops.
 - o Intuition: once a read "sees" a txn and commits, all future reads must also "see" that txn.

Strict Serializability

Pros: applications can easily reason about correctness of transactions.

Cons: strict serializability imposes high read and write latencies on system.

Strict Serializability Example

No	erializable?	Strictly S	Yes	Strictly Serializable?				
	$\{W(x)b, W(y)b\}$	P1:		$\{W(x)b, W(y)b\}$	P1:			
		P2: {W(x)a})a}	P2: {W(x)a			
$\{R(x)a\}$	${R(y)b}$	P3:	$\{R(x)b\}$	{R(x)a}	P3:			
${R(y)b}$	$\{R(x)b\}$	P4:	$\{R(y)b\}$	$\{R(x)b\}$	P4:			

Linearizability

- Total order: There exists some legal total order of operations (not txns).
- Difference from strict serializability?
 - Single-object operations! No transactions!
- Preserves real-time ordering: if an operation A completes before operation B begins, then op A occurs before op B in the total order.
 - A completed write op is visible to all future read ops.
 - Intuition: once a read "sees" a new write, all future reads must also "see" that write.

Pros: Easy to reason about correctness

Cons: High read and write latencies

Linearizability Example

Linearizable?			No	No Linearizable?			Yes
P1:	W(x)a				P1:	W(x)a	
P2:		W(x)b			P2:	W(x)b	
P3:			R(x)b	R(x)a	P3:	R(x)a	a R(x)b
P4:			R(x)b	R(x)a	P4:	R(x)a	a R(x)b

Sequential Consistency

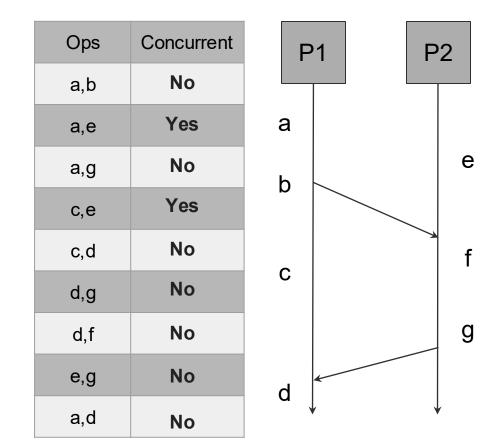

- Total order: there exists some legal total order of operations.
- Preserves process ordering: total order respects order of each process's operations.
- Difference from linearizability?
 - Order of ops across processes not determined by real-time

Pros: Can allow more orderings than linearizability → better performance

Cons: Many possible sequential executions → increased application complexity

Sequential Consistency Example

Seq	uentially Consiste	nt? Yes	Sequ	entially Cons	istent?	No
P1:	W(x)a		P1:	W(x)a		
P2:	W(x)b		P2:	W(x)b		
P3:	R(x)k	R(x)a	P3:		R(x)b	R(x)a
P4:	R(x)k	R(x)a	P4:		R(x)a	R(x)b



Causal+ Consistency

- Partial order: order causally related ops the same way across all processes
- +: replicas' total order eventually converges.
- Difference from sequential consistency?
 - Only causally related ops need to be ordered: no guaranteed total order.
 - Concurrent ops may be ordered differently across different processes.

Pros: preserves causality while improving efficiency.

Cons: harder to reason about concurrency.

Causal+ Consistency Example

Causally+ Consistent? Yes

Causally+ Consistent?

W(x)a

R(x)a W(x)b

P3:

P1:

P2:

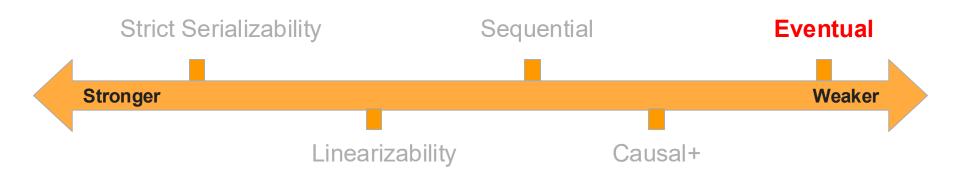
R(x)bR(x)a

P4:

R(x)a

P1: W(x)a

P4:


P2: W(x)b

P3:

R(x)b

R(x)a

R(x)a

Eventual Consistency

- Eventual convergence: If no more writes, all replicas eventually agree.
- Difference from causal consistency?
 - Does not preserve causal relationships
 - Is the "+" in causal+.
- Frequently used with application conflict resolution, anti-entropy

Pros: highly available; think Bayou.

Cons: no safety guarantees, need conflict resolution.

In a nutshell...

Strict Serializability: total order + real time guarantees over transactions

Linearizability: total order + real time guarantees over operations

Sequential Consistency: total order + process order

Causal+ Consistency: causally ordered + replicas eventually converge

Eventual Consistency: eventually, everyone should agree on state

Exercise 1:

P1: {W(x) 1, W(y) 2} {R(y) 4}

P2: {W(x) 1, R(y) 4}

P3: {W(x) 0, W(y) 4}

P4: {R(x) 0} {R(x) 1}

Consistency Model:

Strictly Serializable Yes

Linearizable Yes

Sequential Yes

Causal+ Yes

Eventual Yes

Exercise 2:

P1: W(x) 1 R(y) 4

P2: R(x) 1 R(y) 4

P3: R(x) 1 W(y) 4

P4: R(x) 1 R(y) 4

Consistency Model:

Linearizable Yes

Sequential Yes

Causal+ Yes

Eventual Yes

Exercise 3:

							Linearizable	No
P1:	W(x) 3				W(y) 7		Sequential	Yes
P2:		W(x) 1					Causal+	Yes
P3:			R(x) 1	R(x) 3		R(y) 7	Eventual	Yes
P4:			R(x) 1	R(x) 3		R(y) 7		
P5:			R(x) 1	R(x) 3		R(y) 7		

Exercise 4:

						-	
						Linearizable	No
P1: W(x) 3				W(y) 7		Sequential	No
P2:	W(x) 1					Causal+	Yes
P3:		R(x) 1	R(x) 3		R(y) 7	Eventual	Yes
P4:		R(x) 3	R(x) 1		R(y) 7		
P5:		R(x) 1	R(x) 3		R(y) 7		

Exercise 5:

Consistency Model:

P1: W(x) 1

P2: W(x) 3

P3: W(x) 7

P4: R(x) 3 R(x) 7 R(x) 1

P5: R(x) 3 R(x) 1 R(x) 7

Linearizable No

Sequential No

Causal+ Yes

Eventual Yes

Exercise 6:

P5:

Linearizable No Sequential No P1: W(x) 1 Causal+ Yes P2: W(x) 3 Eventual Yes P3: R(x) 3 W(x) 7 R(x) 3 R(x) 7R(x) 1 P4:

R(x) 3

R(x) 1

R(x) 7

Exercise 7:

							Cor	isistency Model:	
								Linearizable	No
								Sequential	No
P1:	W(x) 1							Causal+	No
P2:		R(x) 1	W(x) 3					Eventual	Yes
P3:				R(x) 3	W(x) 7				
P4:						R(x) 3	R(x) 7	R(x) 1	
P5:						R(x) 3	R(x) 1	R(x) 7	