Raft

October 2025

Raft

e System for enforcing strong consistency (linearizability)

e Similar to Paxos and Viewstamped Replication, but much **simpler**

e Clear boundary between leader election and the log consensus

e Leaderlog is ground truth; log entries only flow in one direction (from leader

to followers)

Recap: Raft Leader election

Everyone sets a randomized timer that expires in [T, 2T] (e.g. T = 150ms)

When timer expires, increment term and send a RequestVote to everyone

Retry this until either:
1. You get majority of votes (including yourself): become leader

2. You receive an RPC from a valid leader: become follower again

Conditions for granting vote

1. (Assignment 3) We did not vote for anyone else in this term
2. (Assignment 3) Candidate term must be >= ours

3. (Assignment 4) Candidate log is at least as up-to-date as ours
a. The log with higher term in the last entry is more up-to-date

b. If the last entry terms are the same, then the longer log is more up-to-date

O currentTerm 0
votedFor -1
commitindex 0
lastApplied 0
nextlndex []
matchindex []

(log entries here)

Logs are 1-indexed

currentTerm latest term server has seen

votedFor candidate ID that received vote in current term,
or -1 if none

commitindex index of highest log entry known to be committed

lastApplied index of highest log entry applied to state machine

(Only on leader)

nextindex for each server, index of the next log entry to send
to that server

matchindex for each server, index of highest log entry known to
be replicated on the server

O currentTerm
votedFor

0
-1

<empty>

currentTerm latest term server has seen

votedFor candidate ID that received vote in current term,
or -1 if none

State required for election

Scenario 1: During System Bootup

O currentTerm
votedFor

0
-1

Timeout

<empty>

1 currentTerm
votedFor

0
-1

<empty>

2 currentTerm
votedFor

0
-1

<empty>

O currentTerm

1
votedFor 0
<empty>
RequestVote
Term: 1

CandidateID: ©
LastLogIndex: -1

LastLogTerm:

1 currentTerm
votedFor

0
-1

<empty>

-1

2 currentTerm
votedFor

<empty>

O currentTerm

1

votedFor 0

<empty>
RequestVoteReply
Term: 1

VoteGranted: true

1 currentTerm
votedFor

1
0

<empty>

2 currentTerm
votedFor

<empty>

O currentTerm
votedFor

<empty>

1 currentTerm
votedFor

1
0

<empty>

2 currentTerm
votedFor

<empty>

O currentTerm
votedFor 0
<empty>
AppendEntries
(heartbeat)
1 currentTerm 1 2 currentTerm
votedFor 0 votedFor

<empty> <empty>

Scenario 2: During Normal Execution
(suppose there are existing log entries...)

O currentTerm 3
votedFor 1 Timeout

1111121 3
1 currentTerm 3 2 currentTerm 3
votedFor 1 votedFor 1
11111121 3 1111111121 3

O currentTerm 4
votedFor 0

111 11([2] 3

RequestVote
Term: 4
CandidatelID: ©
LastLogIndex: 5
LastLogTerm: 3

1 currentTerm 3 2 currentTerm
votedFor 1 votedFor

O currentTerm 4
votedFor 0

RequestVoteReply
Term: 4
VoteGranted: True

1 currentTerm 4 2 currentTerm
votedFor 0 votedFor

O currentTerm
votedFor

1

currentTerm 4
votedFor 0
11111111121 3

2

currentTerm
votedFor

Conditions for granting vote

1. We did not vote for anyone else in this term
2. Candidate term must be >= ours

3. Candidate log is at least as up-to-date as ours
a. The log with higher term in the last entry is more up-to-date

b. If the last entry terms are the same, then the longer log is more up-to-date

Which one is more up-to-date”?

1[1][1][2]3|¢

Which one is more up-to-date”?

Which one is more up-to-date”?

Why reject logs that are not up-to-date?

Leader log is always the ground truth

Once someone is elected leader, followers must throw away conflicting entries

Must NOT throw away committed entries!

Note: Log doesn’t need to be the MOST up-to-date among all servers

What if we accept logs that are not as
up-to-date as ours?

S2

S4

N IINIDN]H

WP W|o

Suppose entries 4-5 have
already been committed

Then previous leader SO
crashes and S3 times out

If S3 becomes leader then
committed entries 4 and 5
may be overwritten!

Why is it OK to throw
away these entries?

If these entries had
been committed, then it
means they must exist
on a majority of servers

-
-
-
NN+
W | W W v

¥S2 [1111 1

83 1 1 1 In that case S4 could
receive votes from the

S4 | 1 1 1 1 1 1 same majority and
become a valid leader

S3

S4

Raft
Normal Operation

O currentTerm 0
votedFor -1
commitindex 0
lastApplied 0
nextlndex []
matchindex []

<empty>

Logs are 1-indexed

commitindex index of highest log entry known to be committed

lastApplied index of highest log entry applied to state machine

(Only on leader)

nextindex for each server, index of the next log entry to send
to that server

matchindex for each server, index of highest log entry known to
be replicated on the server

O currentTerm

0

votedFor -1

commitindex 0

lastApplied 0

nextindex []

matchlndex []
<empty>

1 currentTerm

0
votedFor -1
commitindex 0
lastApplied 0
nextlndex [1
matchindex [
<empty>

2 currentTerm
votedFor
commitindex
lastApplied
nextlindex
matchlndex

<empty>

1 currentTerm 1
O currentTerm 1 votedF.or 0
votedFor 0 commitindex O
commitindex 0 lastApplied 0
lastApplied 0 nextindex [
nextindex [1,1, 1] matchindex []
matchindex [0, 0, 0] I
<empty>

2 currentTerm
votedFor
commitindex
lastApplied
nextlindex
matchlndex

<empty>

O currentTerm

A 4

1 currentTerm
votedFor
commitindex
lastApplied
nextlndex
matchlndex

<empty>

1
Eelet L AppendEntries
commitindex 0 ngm. 1
lastApplied 0 LeaderID: @
nextindex [1,1,1] PrevLogIndex: 0
matchlndex [0, 0, O] PrevLogTerm: -1
LeaderCommit: ©
<empty>
AppendEntries 2 currentTerm 1
Term: 1 votedFor 0
LeaderID: @ commitindex 0
PrevLogIndex: © lastApplied 0
PrevLogTerm: -1 nextindex []
LeaderCommit: @
matchlndex []

<empty>

1 currentTerm
votedFor
commitindex
lastApplied
nextlndex
matchlndex

[y -

<empty>

O currentTerm 1
votedFor 0
commitindex 0 AppendEntriesReply
lastApplied 0 Term: 1
eyl (1,1, 1] Success: True
matchlndex [0, 0, O]
<empty>
AppendEntriesReply 2 currentTerm 1
Term: 1 votedFor 0
Success: True commitindex 0
lastApplied 0
nextindex []
matchlndex []

<empty>

1 currentTerm 1
O currentTerm 1 votedF.or 0
votedFor 0 commitindex 0
commitindex 0 lastApplied 0
lastApplied 0 nextindex [
nextindex [1, 1, 1] matchindex []
matchindex [0, 0, 0] I
<empty>

/eqtjest 1

2 currentTerm

Client votedFor

commitindex
lastApplied
nextlindex
matchlndex

<empty>

1 currentTerm 1
O currentTerm 1 votedF.or 0
votedFor 0 commitindex 0
commitindex 0 lastApplied 0
lastApplied 0 nextindex [
nextindex [1, 1, 1] matchindex []
matchindex [0, 0, 0] I
110111
/eqtjest 1
. currentTerm 1
Client Request 2 2 cotedFor 0
Request 3 commitindex 0
lastApplied 0
nextindex []
matchlndex []
<empty>

O currentTerm

A 4

1 currentTerm
votedFor
commitindex
lastApplied
nextlndex
matchlndex

[y -

<empty>

1
VIRl I el 0 AppendEntries
commitindex 0 ngm. 1
lastApplied 0 LeaderID: ©
nextindex [4,1,1] PrevLogIndex: 0
matchlndex [3, 0, 0] PrevLogTerm: -1
LeaderCommit: ©
110111
110111
AppendEntries 2 currentTerm 1
Term: 1 votedFor 0
;eadfrI?.de o commitindex 0
revLogIndex: .
PrevLogTerm: -1 lastApplied 0
LeaderCommit: © nextindex []
matchlndex []

1111

<empty>

1 currentTerm 1
O currentTerm 1 votedFor 0
votedFor 0 commitindex 0
commitindex 0 AppendEntriesReply lastApplied 0
lastApplied 0 Term: 1 nextindex [1
nextindex [4,1,1] Success: True matchindex []
matchinde 3,0,0
x B0 1|11 1
111 1
. 2 currentTerm 1
AppendEntriesReply votedFor 0
Term: 1 _
Success: True commitindex 0
lastApplied 0
nextindex []
matchlndex []
11111 1

currentTerm 1
votedFor 0
commitindex 3
lastApplied 0
nextindex [4, 4, 4]
matchindex [3, 3, 3]
111

Entry 3 is now replicated on a
majority, so we can commit it

while commitIndex > lastApplied,
apply commands to state machine

Client

currentTerm
votedFor
commitindex
lastApplied
nextindex
matchlndex

[4, 4, 4]
[3, 3, 3]

1

1

1

A/esponse 123

Once leader has applied
an entry to state machine,
it is safe to tell the client
that the entry is committed

Raft
After new leader election

I 1 currentTerm 1
O currentTerm 1 : votedEor 0
votedFor 0 p Commltllndex 0
commitindex 3) lastApplied 0
lastApplied 3 / nextindex [
nextindex [4, 4, 4] / matchindex []
matchindex 3,33 /
[] / 111111
THN111 /
P Timeout
- - -
- - -
P - 2 currentTerm 1
. / votedFor 0
Partition! / commitindex O
Il lastApplied 0
/ nextindex []
/ matchlndex []
11111 1

: Ao I 1 currentTerm 2
curentTerm 1 WL ' votedFor 1
votedFor 0 ! commitindex 0
commitindex 3 Il lastApplied 0
lastApplied 3 / nextindex [4, 4, 4]
nextlndex [4, 4, 4] / matchindex [0, 3, 0]
matchindex [3, 3, 3] /
/ 1101 1
11| 1 /
7/
Ve
- - AppendEntries
- Term: 2
Phe - 2 currentTerm 2 LeaderID: 1
Ve votedFor 1 PrevLogIndex: 3
/ commitindex 0 PrevLogTerm: 1
lastApplied 0 LeaderCommit: ©
nextindex []
matchlndex []
111 (1

‘ 7o I 1 curentTerm 2
curentTerm 1 WL ' votedFor 1
votedFor 0 ! commitindex 0
commitindex 3 Il lastApplied 0
lastApplied 3 / nextindex [4, 4, 4]
nextlndex [4, 4, 4] / matchindex [0, 3, 0]
matchindex [3, 3, 3] /
/ 1101 1
11| 1 /
7/
,/
_-- AppendEntriesReply
=" Term: 2
g 2 curentTerm 2 Success: True
Ve votedFor 1
/ commitindex 0
lastApplied 0
nextindex []
matchlndex []
11111 1

I 1 currentTerm 2
currentTerm 1 : votedF-or 1
votedFor 0 p commltlr_1dex 3
commitindex 3 ! lastApplied 3
lastApplied 3 / nextindex [4, 4, 4]
nextindex [4, 4, 4] / matchindex [0, 3, 3]
matchlndex [3, 3, 3] /
/ 111
11| 1 /
7/
7
-~
_-- AppendEntries
- - Term: 2
,° 2 currentTerm 2 LeaderID: 1
Ve votedFor 1 PrevLogIndex: 3
/ commitindex O PrevLogTerm: 1
lastApplied 0 LeaderCommit: 3
nextindex [
matchlndex [
111 (1

I 1 currentTerm 2
currentTerm 1 : VotedFlor 1
votedFor 0 | commltlhdex 3
commitindex 3) lastApplied 3
lastApplied 3 / nextlndex [4, 4, 4]
nextindex [4, 4, 4] / matchindex [0, 3, 3]
matchlndex 3,33 /
>3 / 1101
11| 1 /
7/
/
- - -
- - -
P - 2 currentTerm 2
/ votedFor 1
/ commitindex 3
lastApplied 3
nextindex [
matchindex [

||111

I 1 currentTerm 2
currentTerm 1 : votedF.or 1
votedFor 0 | commltlhdex 5
commitindex 3 ! lastApplied 5
lastApplied 3 / nextindex [4, 6, 6]
nextindex [4, 4, 4] / matchindex [0, 5, 5]
matchlndex [3, 3, 3] /
, 111l 1]]2] 2
11| 1 /
7/
ve
- -
-7 Committing entries
’ 1]
e 2 currentTerm 2 in the new term...
Ve votedFor 1
/ commitindex 5
lastApplied 5
nextindex [
matchindex [
HEHHaBAE

Later, the network partition is fixed ...

: L’/“" 1 curentTerm 2
S
O currentTerm 1 Y votedF.or 1
votedFor 0 nooendEntries > conwnmhdex 5
commitindex 3 ngm' 1 1 lastApplied 5
lastApplied 3 LeaderID: © ne)f[ﬂE?e; [g’ 2 2]
nextindex [d4nd] PrevLogIndex: 3 matchindex [0, 5, 3]
matchlndex [3, 3, 3] PrevLogTerm: 1
LeaderCommit: 3 1 1 1 2|2
111
AppendEntries :2 currentTerm
Term: 1 votedFor
LeaderID: ©

PrevLogIndex: 3
PrevLogTerm: 1
LeaderCommit: 3

lastApplied
nextindex

2
1
commitindex 5
5
[
matchlndex [

—_—

HEHHaBAE

: Lr/‘;v 1 currentTerm 2
N,
O currentTerm 1 S\ votedEor 1
votedFor 0 ‘A endEntriesRepl commltllndex >
commitindex 3 ngm_ 5 . Pty lastApplied 5
lastApplied 3 Success: false nextindex [4, 6, 6]
nextindex [4, 4, 4] matchindex [0, 5, 9]
matchlndex [3, 3, 3] 1 1 1 5> 2
111
Rejected request
2 currentTerm 2 because local term
AppendEntriesReply votedFor 1 iS hlgher (2 S 1)
Term: 2 commitindex 5
Success: false)
lastApplied 5
nextindex [
matchlndex [
|| 212

1 currentTerm 2
O currentTerm 2 votedF.or 1
votedFor -1 commltlhdex 5
commitindex 3 lastApplied 5
lastApplied 3 nextindex [4, 6, 6]
nextindex [1 matchindex [0, 5, 5]
matchlndex [] 1 1 , 12
11010111
Old leader is dethroned! 2 curentTerm 2
votedFor 1
commitlndex 5
lastApplied 5
nextindex [
matchlndex [
HEHHaBAE

1 currentTerm

2
currentTerm 2 votedEor 1
votedFor 1 ‘AppendEntr-ies commitindex 5
; lastApplied 5
commitindex 3 Term: 2 nextindex [4, 6, 6]
IastApplled 3 LeaderID: 1 matchindex [0’ 5’ 5]
nextindex [] PrevLogIndex: 3 atchinde '
matchlndex [] PrevLogTerm: 1
LeaderCommit: 5 1 1 1 2] 2
111 1
212
2 currentTerm 2
votedFor 1
commitlndex 5
lastApplied 5
nextindex []
matchlndex []
||1 M2 2

1 currentTerm

2
currentTerm 2 votedFor 1
votedFor -1 > commitindex 5
A dEntriesRepl ;
commitindex 5 ngﬁrf 2" riesneply lastApplied 5
lastApplied 5 Success: true nextindex [4, 6, 6]

nextlndex [matchindex [0, 5, 5]

matchlndex []

THNHTNTHZ2]| 2

TN1HH2]]2

2 currentTerm 2
votedFor 1
commitindex 5
lastApplied 5
nextindex [
matchlndex [

—_—

HEHHaBAE

1 currentTerm 2
O currentTerm 2 votedF.or 1
votedFor -1 commltllndex 5
commitindex 5 lastApplied 5
lastApplied 5 nextindex [6, 6, 6]
nextindex [] matchindex [5, 5, 5]
matchlndex [] R
THTNTHZ2]|2

Everyone is on the 2 currentTerm

2

; votedFor 1

same page agam commitindex 5
5

[

[

lastApplied
nextlndex
matchlndex

—_—

HEHHaBAE

When log entries don't match...

When log entries don’'t match...

e The leader will find the latest log entry in the follower where the
two logs agree

e At the follower:
o Everything after that entry will be deleted
o The leader’s log starting from that entry will be replicated on
the follower

1 currentTerm 5
currentTerm 5 votedFor 1
votedFor 1 commitindex 5
commitindex 5 lastApplied 5
lastApplied 5 nextindex [6, 6, 6]
nextindex [] matchindex [5, 5, 0]
matchindex [] T EmEe
1TNHN1NH3|4
- -~ T T = -
-~ 2 currentTerm
votedFor
commitindex
lastApplied
nextlindex
matchlindex

HEHRBRAE

O currentTerm 5
votedFor 1
commitindex 5
lastApplied 5
nextindex [
matchlndex [

_—

THNTHTNH3|4

prevLogIndex = 5
S1 log[5] = 4

S2 log[5] = 2
Mismatch!

currentTerm 5
votedFor 1
commitindex 5
lastApplied 5
nextlndex [6, 6, 6]

matchlndex [5, 5, 0]

1THTI3|| 4

currentTerm
votedFor
commitindex
lastApplied
nextlindex
matchlindex

(| I |

AppendEntries
Term: 5
LeaderID: 1
PrevLogIndex: 5
PrevLogTerm: 4
LeaderCommit: 5

1 currentTerm 5

currentTerm 5 votedEor 1
votedFor 1 commltllndex 5
commitindex 5 lastApplied 5
lastApplied 5 nextindex [6, 6, 6]
nextlndex [matchindex [5, 5, 0]
matchindex [] T
111314

AppendEntriesReply

Term: 5

2 currentTerm 5 Success: False

votedFor -1
commitindex 3
lastApplied 3
nextindex []
matchlndex []

HEHRBRAE

1 currentTerm 5
O currentTerm 5 votedEor 1
votedFor 1 commltllndex 5
commitindex 5 lastApplied 5
lastApplied 5 nextindex [6, 6, 5]
nextindex [] matchindex [5, 5, 0]
matchlndex [] I E
THNTHTN34

AppendEntries
Term: 5
prevLogIndex = 4 2 curentTerm 5 LeaderID: 1
dFor -1 PrevLogIndex: 4
S1 log[4] = 3 vote g
g[] commitindex 3 PrevLogTerm: 3
S2 10g[4] = 2 lastApplied 3 LeaderCommit: 5
nextlndex [] 4
Mismatch! matchlndex []
HEHEBRE

1 currentTerm 5

currentTerm 5 votedEor 1
votedFor 1 commltllndex 5
commitindex 5 lastApplied 5
lastApplied 5 nextindex [6, 6, 5]
nextlndex [matchindex [5, 5, 0]
matchindex [] T
111314

AppendEntriesReply

Term: 5

2 currentTerm 5 Success: False

votedFor -1
commitindex 3
lastApplied 3
nextindex []
matchlndex []

HEHRBRAE

1 currentTerm 5
O currentTerm 5 votedEor 1
votedFor 1 commltllndex 5
commitindex 5 lastApplied 5
lastApplied 5 nextindex [6, 6, 4]
nextindex [] matchindex [5, 5, 0]
matchlndex [] I E
THTNTH3]||4

AppendEntries
Term: 5
prevLogIndex = 3 2 curentTerm 5 LeaderID: 1
tedFor -1 PrevLogIndex: 3
S1 log[3] =1 vo g
g[] commitindex 3 PrevLogTerm: 1
S2 10g[3] =1 lastApplied 3 LeaderCommit: 5
nextindex [] 31|l 4
matchlndex []
HEHEBRE

1 currentTerm 5

currentTerm 5 votedEor 1
votedFor 1 commltllndex 5
commitindex 5 lastApplied 5
lastApplied 5 nextindex (6, 6, 4]
nextindex [] matchindex [5, 5, 0]
matchlndex [] I E
1TNHN1NH3|4

AppendEntriesReply

Term: 5

2 currentTerm 5

votedFor -1
commitindex 5
lastApplied 5
nextindex []
matchlndex []

HEHRBRAE

1 currentTerm

5

O currentTerm 5 votedFor 1

votedFor 1 commitindex 5

commitindex 5 lastApplied 5
lastApplied 5 nextindex [6, 6, 6]
nextindex [] matchindex [5, 5, 5]

matchlndex [] I E

THNTHTNH3|4

Everyone is on the 2 curentTerm 5

. votedFor -1
Same page again commitindex 5

lastApplied 5
nextindex [
matchlndex [

THNTHTN3]]4

Optimization to reduce
number of messages?

Key Idea

e Reduce the number of rejected AppendEntries RPCs
e One RPC per conflicting term, rather than one RPC per conflicting entry

Detailed Algorithm:
e \When rejecting an AppendEntries request, the follower can include the term
of the conflicting entry and the first index it stores for that term.
e With this information, the leader can decrement nextindex to bypass all of the
conflicting entries in that term.
e See page 7-8 in Raft (extended version)

https://raft.github.io/raft.pdf

1 currentTerm 5
currentTerm 5 votedF.or 1
votedFor 1 commltlhdex 5
commitindex 5 lastApplied 5
lastApplied 5 nextindex [6, 6, 6]
nextindex [] matchindex [5, 5, 0]
matchlndex [] I E
111134

AppendEntries
Term: 5
2 currentTerm LeaderID: 1
votedFor PrevLogIndex: 5
commitindex PrevLogTerm: 4
lastApplied LeaderCommit: 5
nextlindex
matchlndex

HEHRBRAE

1 currentTerm 5
O currentTerm 5 votedEor 1
votedFor 1 commltllndex 5
commitindex 5 lastApplied 5
lastApplied 5 nextindex [6, 6, 6]
nextindex [] matchindex [5, 5, 0]
matchlndex [] I E
THNTHTN34

AppendEntriesReply
Term: 5
2 currentTerm 5 Success: False
. . g votedFor -1 ConflictTerm: 2
Specify the conflicting commitindex 3 ConflictFirstIndex: 4
term and the first index of lastApplied 3
this term nextindex []

matchlndex []

HEHRBRAE

1 currentTerm 5
O currentTerm 5 votedEor 1
votedFor 1 commltllndex 5
commitindex 5 lastApplied 5
lastApplied 5 nextindex [6, 6, 4]
nextindex [] matchindex [5, 5, 0]
matchlndex [] I E
THTNTH3]||4

AppendEntries
Term: 5
2 currentTerm 5 LeaderID: 1
) votedFor -1 PrevLogIndex: 3
Leader sends its log commitindex 3 PreviogTerm: 1
entries that are different lastApplied 3 LeaderCommit: 5
from the follower’s nextindex] 3| 4
. . matchlndex []
starting the specified
conflicting term “ L2122

1 currentTerm 5
currentTerm 5 votedEor 1
votedFor 1 commltllndex 5
commitindex 5 lastApplied 5
lastApplied 5 nextindex [6, 6, 6]
nextindex [] matchindex [5, 5, 5]
matchlndex [] I E
TNN1ll3|14
Key Idea:
2 curentTerm 5 Decrement nextIndex

votedFor -1
commitindex 5
lastApplied 5
nextindex []
matchlndex []

one term at a time

THNTHTN3]]4

Conditions for committing an entry

1. The entry exists on a majority AND was appended to leader in the current term

2. Or, the entry precedes another entry that is committed

Caveat for committing old entries

Can’t assume an old entry has been committed even if it exists on a majority

‘ 1 2

S1 |T 2| s1log2]is only
partially

S2 | 1| 2] replicated...

S3 |1

S4 |1

S5 |1

S1 is the leader

Caveat for committing old entries

Can’t assume an old entry has been committed even if it exists on a majority

1 2 1 2
s1 [1]2] [1]2
s2 [1]2] [1]2
s3 [1 1
sa [1 1
38
5 [1 [1]3]

S1 crashes,
S5 becomes leader

Caveat for committing old entries

Can’t assume an old entry has been committed even if it exists on a majority

oY 1z 12 123
<1 [1]2 1> E 5
2 O] O 003) Sl
S3 |1 1 15-:2“5 majority
S4 |1 1 1 -
S5 |1 |l ﬂ 113
S5 crashes,

S1 becomes leader

Caveat for committing old entries

Can’t assume an old entry has been committed even if it exists on a majority

1 2 1 2 1 2 3 1_2“3

s1 [1]2] [1]2] [2f2T4 [3]

s2 [1]2] [1[2] [1]2
— S5 replicates

S3 |1 1 1i 2| S5.log[2] to all other
=== nodes...

S4 |1 1 1

o

S5 [1 [1]3] [1]3

S1 crashes,
S5 becomes leader

Caveat for committing old entries

Can’t assume an old entry has been committed even if it exists on a majority

1 2 1 2 1 2 3 1 2 3
s1 [1]2] [1]2 -3 Entry 2 was overwritten
s2 [1]12] |1f2 1_:2_“ [3] repﬁ;lczrt]etg?;gg rimtn:;ifity!
s3 [1 1 1] 2
S4 |1 1 1 Cannot assume entry 2
\%5 1 Il ﬂ 113 was committed

Caveat for committing old entries

Can’t assume an old entry has been committed even if it exists on a majority

W L2 12 123
<1 [1[2] [1[2] [1]2]2
s2 [1]2] [1]2] [1]2

s3 [1 1 1] 2]
s4 [1 1 1

s5 [1 [1]3] [1]3

1 2 3
E Entry 2 is committed once
1 entry 3 is committed
1|2 : :
Commit old entries
1 indirectly
1|3

S1 commits entry 3

Exercise...

Rules for deciding which log is more up-to-date:
e Compare index and term of last entries in the logs
e If the terms are different: log with later term is more up-to-
date
e |[f the terms are the same: longer log is more up-to-date

Q1: Is this a possible configuration?

1 2 3 4 5
SO 111111213
ST 1111111213
S2 | 1([112]3
S3 | 1|1
S4 | 11111 1] 1

Trace the steps...

SO |1
S1 | 1
S2 | 1
S3 | 1
:‘%\;\’84 1

SO

S1

S2

S3

S4

N (N[N | w

W | W W+

Trace the steps...

1 2

SO |1 (1
ST |1 || 1
S2 |1 |1
§3 1 1] 1
"a\}s4 1|1

SO

S1

S2

S3

S4

N (N[N | w

W | W W+

Trace the steps...

1 2

SO |11

SO O

S2 |1 |1

S3 |1 || 1
,%y Tl

SO

S1

S2

S3

S4

N (N[N | w

W | W W+

Trace the steps...

i 1 2
s1 1] 1
s2 [1] 1
s3 [1] 1
M (1111

SO

S1

S2

S3

S4

N (N[N | w

W | W W+

Trace the steps...

i 1 2
¥ (111112
st [1]/1] 2
s2 [1]/1]2

s3 | 1|1
M (1111

SO

S1

S2

S3

S4

N (N[N | w

W | W W+

Trace the steps...

1 2
X112
s1 [1][1][2
¥ (111112

s3 [1] 1
M (1111

SO

S1

S2

S3

S4

N (N[N | w

W | W W+

<t M| MM <~
| AN | |N || N ~
N | ™ (| ™ || ™| ™[] v
~ | = ||~ |]| ~ || ~|] ~—
O ~= AN o <
“w o v O ou
=
-
: NN e —
(7))
O
OO AN~~~ || || «—
P
(/)
QO |~~~]| ~—
O
-
O © + «
O SS@/Sx
(O »
Nt A.
T

(@) <~
< | ™M (9] (a9 ~—
™| N AN AN ~
AN | ™ < <) <
— | ™ <~ <~ <~ <~
o -~
(7)) (0p)
(a9 (o9
: || N
(/)
Q.
e AN [T ~ ~) wa <~
e
(7p)
e — | ™ A w <~ \w)
L
-
O o — AN
O n w \uVS
© ~
Nt :
_I

Q2: Is this a possible configuration?

SO

S1

S2

S3

S4

4
3
3
3

BTN | w

5

NO!

S3 cannot become leader in term 4
(Who's going to vote for him?)

Q3: Is this a possible configuration?

SO

S1

S2

S3

S4

4
6
6
6

A 1T OOV OO w

5

What happened to terms 2 and 3?

1. Split vote: no one became leader
2. Partitions: no one became leader
3. Simply no requests in these terms

Q4: Is this a possible configuration?

1 2 3 4
SO | 1|1

st (1111113 NO!

S2 | 1 111 3 Let’s try tracing the steps...

Q4: Is this a possible configuration?

1 2 3 4 1

so | 11| 1 S0 | 1
:

¥31 111111 1 S1 | 1

Q4: Is this a possible configuration?

1 2 3 4 1

M 1] 1 S0 | 1

X 11| 1 s1 [1

S2 |1 || 1 S2 | 1

No one becomes leader in term 2...

Q4: Is this a possible configuration?

1 2 3 4 1

SO0 | 1 1 SO | 1

X 11| 1 s1 | 1
D

S2 | 1 1 3 S2 | 1

Q4: Is this a possible configuration?

1 2 3 4 1

SO | 1 || 1 SO | 1

X 11| 1 s1 | 1
X

Q4: Is this a possible configuration?

1 2 3 4 1
SO | 1|1 SO | 1
‘%1 1101111 4 S1 |1

X 113 s2 | 1

S0 previously voted for S2 in term 3
S0 can only vote for S1 for term 4!

Q4: Is this a possible configuration?

SO

S1

S2

2 3 4
1 The two entries interm | 3| are in
different positions
11111 3
S1 and S2 could not have written
1 3 these entries without being leaders

But they can’t both be leaders in
the same term!

Conditions for committing an entry

1. The entry exists on a majority AND was appended to leader in the current term

2. Or, the entry precedes another entry that is committed

Q5: Is entry 2 (term 2) guaranteed to be committed?

1 2
SO | 1|2
S1 11| 2

Entry 2 is on a majority of nodes
S2 | 1| 2
No one else has a more up-to-date log

S3 | 1
S4 1

QG6: Is entry 2 (term 2) guaranteed to be committed?

SO

S1

S2

S3

S4

3

4

2
2
2
2
3

NO!

(See Figure 8 in Raft paper)

S3 could win the election for Term 3, before Term 2 was replicated on
S2 (with cotes from S2, S3, S4), then S3 crashes and the previous
leader continued replicating Term 2 on S2 (similar to Figure 8 in the

paper)

Q7: Is entry 2 (term 2) guaranteed to be committed?

1 2 3

SO (112 || 4
NO!
S1 (112 || 4
S3 could still become leader if SO crashes

S2 1 2 (votes from S2, S3 and S4)
S3 | 11| 3
S4 1

Q8: Is entry 2 (term 2) guaranteed to be committed?

3 4

SO | 1

S1 | 1

2
2
2
Entry 4 is guaranteed to be committed
S2 1 2 because no one else has a more up-to-
3
2

date log, and majority has entry 4

S3 | 1

All entries before entry 4 are safe

S4 | 1

	Slide 1: Raft
	Slide 2: Raft
	Slide 3: Recap: Raft Leader election
	Slide 4: Conditions for granting vote
	Slide 7
	Slide 8
	Slide 9: Scenario 1: During System Bootup
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Scenario 2: During Normal Execution (suppose there are existing log entries…)
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Conditions for granting vote
	Slide 21: Which one is more up-to-date?
	Slide 22: Which one is more up-to-date?
	Slide 23: Which one is more up-to-date?
	Slide 24: Why reject logs that are not up-to-date?
	Slide 25: What if we accept logs that are not as up-to-date as ours?
	Slide 26: S0
	Slide 27: S0
	Slide 28: S0
	Slide 29: Raft Normal Operation
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Raft After new leader election
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Later, the network partition is fixed …
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: When log entries don’t match...
	Slide 56: When log entries don’t match...
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: Optimization to reduce number of messages?
	Slide 66: Key Idea
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: Conditions for committing an entry
	Slide 72: Caveat for committing old entries
	Slide 73: Caveat for committing old entries
	Slide 74: Caveat for committing old entries
	Slide 75: Caveat for committing old entries
	Slide 76: Caveat for committing old entries
	Slide 77: Caveat for committing old entries
	Slide 78: Exercise...
	Slide 79: Q1: Is this a possible configuration?
	Slide 80: Trace the steps...
	Slide 81: Trace the steps...
	Slide 82: Trace the steps...
	Slide 83: Trace the steps...
	Slide 84: Trace the steps...
	Slide 85: Trace the steps...
	Slide 86: Trace the steps...
	Slide 87: Trace the steps...
	Slide 88: Q2: Is this a possible configuration?
	Slide 89: Q3: Is this a possible configuration?
	Slide 90: Q4: Is this a possible configuration?
	Slide 91: Q4: Is this a possible configuration?
	Slide 92: Q4: Is this a possible configuration?
	Slide 93: Q4: Is this a possible configuration?
	Slide 94: Q4: Is this a possible configuration?
	Slide 95: Q4: Is this a possible configuration?
	Slide 96: Q4: Is this a possible configuration?
	Slide 97: Conditions for committing an entry
	Slide 98: Q5: Is entry 2 (term 2) guaranteed to be committed?
	Slide 99: Q6: Is entry 2 (term 2) guaranteed to be committed?
	Slide 100: Q7: Is entry 2 (term 2) guaranteed to be committed?
	Slide 101: Q8: Is entry 2 (term 2) guaranteed to be committed?

