
October 2025

Raft

Raft

● System for enforcing strong consistency (linearizability)

● Similar to Paxos and Viewstamped Replication, but much **simpler**

● Clear boundary between leader election and the log consensus

● Leader log is ground truth; log entries only flow in one direction (from leader

to followers)

Everyone sets a randomized timer that expires in [T, 2T] (e.g. T = 150ms)

When timer expires, increment term and send a RequestVote to everyone

Retry this until either:

1. You get majority of votes (including yourself): become leader

2. You receive an RPC from a valid leader: become follower again

Recap: Raft Leader election

1. (Assignment 3) We did not vote for anyone else in this term

2. (Assignment 3) Candidate term must be >= ours

3. (Assignment 4) Candidate log is at least as up-to-date as ours

a. The log with higher term in the last entry is more up-to-date

b. If the last entry terms are the same, then the longer log is more up-to-date

Conditions for granting vote

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

(log entries here)

0 0

-1

0

0

[]

[]

currentTerm latest term server has seen

votedFor candidate ID that received vote in current term,

or -1 if none

commitIndex index of highest log entry known to be committed

lastApplied index of highest log entry applied to state machine

nextIndex for each server, index of the next log entry to send

to that server

matchIndex for each server, index of highest log entry known to

be replicated on the server

(Only on leader)

Logs are 1-indexed

currentTerm

votedFor

<empty>

0 0

-1

currentTerm latest term server has seen

votedFor candidate ID that received vote in current term,

or -1 if none

State required for election

Scenario 1: During System Bootup

currentTerm

votedFor

<empty>

0 0

-1

currentTerm

votedFor

<empty>

1 0

-1

currentTerm

votedFor

<empty>

2 0

-1

Timeout

currentTerm

votedFor

<empty>

0 1

0

currentTerm

votedFor

<empty>

1 0

-1

currentTerm

votedFor

<empty>

2 0

-1

RequestVote
Term: 1
CandidateID: 0
LastLogIndex: -1
LastLogTerm: -1

currentTerm

votedFor

<empty>

0 1

0

currentTerm

votedFor

<empty>

1 1

0

currentTerm

votedFor

<empty>

2 1

0

RequestVoteReply
Term: 1
VoteGranted: true

currentTerm

votedFor

<empty>

0 1

0

currentTerm

votedFor

<empty>

1 1

0

currentTerm

votedFor

<empty>

2 1

0

currentTerm

votedFor

<empty>

0 1

0

currentTerm

votedFor

<empty>

1 1

0

currentTerm

votedFor

<empty>

2 1

0

AppendEntries
(heartbeat)

Scenario 2: During Normal Execution
(suppose there are existing log entries…)

currentTerm

votedFor

0 3

1

currentTerm

votedFor

1 3

1

currentTerm

votedFor

2 3

1

1 1 1 2 3

1 1 1 2 3 1 1 1 2 3

Timeout

currentTerm

votedFor

0 4

0

currentTerm

votedFor

1 3

1

currentTerm

votedFor

2 3

1

1 1 1 2 3

1 1 1 2 3 1 1 1 2 3

RequestVote
Term: 4
CandidateID: 0
LastLogIndex: 5
LastLogTerm: 3

currentTerm

votedFor

0 4

0

currentTerm

votedFor

1 4

0

currentTerm

votedFor

2 4

0

1 1 1 2 3

1 1 1 2 3 1 1 1 2 3

RequestVoteReply
Term: 4
VoteGranted: True

currentTerm

votedFor

0 4

0

currentTerm

votedFor

1 4

0

currentTerm

votedFor

2 4

0

1 1 1 2 3

1 1 1 2 3 1 1 1 2 3

1. We did not vote for anyone else in this term

2. Candidate term must be >= ours

3. Candidate log is at least as up-to-date as ours

a. The log with higher term in the last entry is more up-to-date

b. If the last entry terms are the same, then the longer log is more up-to-date

Conditions for granting vote

Which one is more up-to-date?

1 1 1 2 3

1 1 1 1 1 1 1

Which one is more up-to-date?

1 1 1 2 3

1 1 1 2 3 3 3

Which one is more up-to-date?

1 1 1 2 3

1 1 4

Why reject logs that are not up-to-date?

Leader log is always the ground truth

Once someone is elected leader, followers must throw away conflicting entries

Must NOT throw away committed entries!

Note: Log doesn’t need to be the MOST up-to-date among all servers

What if we accept logs that are not as

up-to-date as ours?

1 1 1 2 3

1 1 1

1 1 1 2 3

S0

S1

S2

1 1 1 1 1 1

S3

S4

1 1 1

2 3

Suppose entries 4-5 have

already been committed
4 52 31

Then previous leader S0

crashes and S3 times out

If S3 becomes leader then

committed entries 4 and 5

may be overwritten!

1 1 1 2 3

1 1 1

1 1 1 2 3

S0

S1

S2

1 1 1 1 1 1

S3

S4

1 1 1

2 3

4 52 31 Why is it OK to throw

away these entries?

If these entries had

been committed, then it

means they must exist

on a majority of servers

In that case S4 could

receive votes from the

same majority and

become a valid leader

1 1 1 2 3

1 1 1

1 1 1 2 3

S0

S1

S2

1 1 1

S3

S4

1 1 1

2 3

4 52 31

2 3

2 3

Raft

Normal Operation

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

0 0

-1

0

0

[]

[]

currentTerm latest term server has seen

votedFor candidate ID that received vote in current term,

or -1 if none

commitIndex index of highest log entry known to be committed

lastApplied index of highest log entry applied to state machine

nextIndex for each server, index of the next log entry to send

to that server

matchIndex for each server, index of highest log entry known to

be replicated on the server

(Only on leader)

Logs are 1-indexed

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

0 0

-1

0

0

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

1 0

-1

0

0

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

2 0

-1

0

0

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

0 1

0

0

0

[1, 1, 1]

[0, 0, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

1 1

0

0

0

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

2 1

0

0

0

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

0 1

0

0

0

[1, 1, 1]

[0, 0, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

1 1

0

0

0

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

2 1

0

0

0

[]

[]

AppendEntries
Term: 1
LeaderID: 0
PrevLogIndex: 0
PrevLogTerm: -1
LeaderCommit: 0

AppendEntries
Term: 1
LeaderID: 0
PrevLogIndex: 0
PrevLogTerm: -1
LeaderCommit: 0

AppendEntriesReply
Term: 1
Success: True

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

0 1

0

0

0

[1, 1, 1]

[0, 0, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

1 1

0

0

0

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

2 1

0

0

0

[]

[]

AppendEntriesReply
Term: 1
Success: True

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

0 1

0

0

0

[1, 1, 1]

[0, 0, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

1 1

0

0

0

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

2 1

0

0

0

[]

[]

Client

Request 1

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 1

0

0

0

[1, 1, 1]

[0, 0, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

1 1

0

0

0

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

2 1

0

0

0

[]

[]

1 1 1

Client

Request 1

Request 2

Request 3

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 1

0

0

0

[4, 1, 1]

[3, 0, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

1 1

0

0

0

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

<empty>

2 1

0

0

0

[]

[]

1 1 1

AppendEntries
Term: 1
LeaderID: 0
PrevLogIndex: 0
PrevLogTerm: -1
LeaderCommit: 0

1 1 1

AppendEntries
Term: 1
LeaderID: 0
PrevLogIndex: 0
PrevLogTerm: -1
LeaderCommit: 0

1 1 1

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 1

0

0

0

[4, 1, 1]

[3, 0, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 1

0

0

0

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 1

0

0

0

[]

[]

1 1 1

1 1 1

1 1 1

AppendEntriesReply
Term: 1
Success: True

AppendEntriesReply
Term: 1
Success: True

while commitIndex > lastApplied,

apply commands to state machine

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 1

0

3

0

[4, 4, 4]

[3, 3, 3]

1 1 1

Entry 3 is now replicated on a

majority, so we can commit it

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 1

0

3

3

[4, 4, 4]

[3, 3, 3]

1 1 1

Once leader has applied

an entry to state machine,

it is safe to tell the client

that the entry is committed

Client

Response 1 2 3

Raft

After new leader election

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 1

0

3

3

[4, 4, 4]

[3, 3, 3]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 1

0

0

0

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 1

0

0

0

[]

[]

1 1 1

1 1 1

1 1 1

Timeout

Partition!

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 1

0

3

3

[4, 4, 4]

[3, 3, 3]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 2

1

0

0

[4, 4, 4]

[0, 3, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 2

1

0

0

[]

[]

1 1 1

1 1 1

1 1 1

2
1

3
1
0

AppendEntries
Term:
LeaderID:
PrevLogIndex:
PrevLogTerm:
LeaderCommit:

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 1

0

3

3

[4, 4, 4]

[3, 3, 3]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 2

1

0

0

[4, 4, 4]

[0, 3, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 2

1

0

0

[]

[]

1 1 1

1 1 1

1 1 1

AppendEntriesReply
Term: 2
Success: True

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 1

0

3

3

[4, 4, 4]

[3, 3, 3]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 2

1

3

3

[4, 4, 4]

[0, 3, 3]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 2

1

0

0

[]

[]

1 1 1

1 1 1

1 1 1

AppendEntries
Term: 2
LeaderID: 1
PrevLogIndex: 3
PrevLogTerm: 1
LeaderCommit: 3

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 1

0

3

3

[4, 4, 4]

[3, 3, 3]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 2

1

3

3

[4, 4, 4]

[0, 3, 3]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 2

1

3

3

[]

[]

1 1 1

1 1 1

1 1 1

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 1

0

3

3

[4, 4, 4]

[3, 3, 3]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 2

1

5

5

[4, 6, 6]

[0, 5, 5]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 2

1

5

5

[]

[]

1 1 1

1 1 1

1 1 1

2

2 2

2

Committing entries

in the new term...

Later, the network partition is fixed …

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 1

0

3

3

[4, 4, 4]

[3, 3, 3]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 2

1

5

5

[4, 6, 6]

[0, 5, 5]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 2

1

5

5

[]

[]

1 1 1

1 1 1

1 1 1

2

2 2

2

AppendEntries
Term: 1
LeaderID: 0
PrevLogIndex: 3
PrevLogTerm: 1
LeaderCommit: 3

AppendEntries
Term: 1
LeaderID: 0
PrevLogIndex: 3
PrevLogTerm: 1
LeaderCommit: 3

AppendEntriesReply
Term: 2
Success: false

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 1

0

3

3

[4, 4, 4]

[3, 3, 3]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 2

1

5

5

[4, 6, 6]

[0, 5, 5]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 2

1

5

5

[]

[]

1 1 1

1 1 1

1 1 1

2

2 2

2

AppendEntriesReply
Term: 2
Success: false

Rejected request

because local term

is higher (2 > 1)

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 2

-1

3

3

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 2

1

5

5

[4, 6, 6]

[0, 5, 5]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 2

1

5

5

[]

[]

1 1 1

1 1 1

1 1 1

2

2 2

2

Old leader is dethroned!

AppendEntries
Term: 2
LeaderID: 1
PrevLogIndex: 3
PrevLogTerm: 1
LeaderCommit: 5

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 2

-1

3

3

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 2

1

5

5

[4, 6, 6]

[0, 5, 5]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 2

1

5

5

[]

[]

1 1 1

1 1 1

1 1 1

2

2 2

2

2 2

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 2

-1

5

5

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 2

1

5

5

[4, 6, 6]

[0, 5, 5]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 2

1

5

5

[]

[]

1 1 1

1 1 1

1 1 1

2

2 2

2

AppendEntriesReply
Term: 2
Success: true

2 2

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 2

-1

5

5

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 2

1

5

5

[6, 6, 6]

[5, 5, 5]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 2

1

5

5

[]

[]

1 1 1

1 1 1

1 1 1

2

2 2

2

2 2

Everyone is on the

same page again

When log entries don’t match...

When log entries don’t match...

● The leader will find the latest log entry in the follower where the

two logs agree

● At the follower:

○ Everything after that entry will be deleted

○ The leader’s log starting from that entry will be replicated on

the follower

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 5

1

5

5

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 5

1

5

5

[6, 6, 6]

[5, 5, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 3

2

3

3

[]

[]

1 1 1

1 1 1

1 1 1

3 4

2 2 2

3 4

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 5

1

5

5

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 5

1

5

5

[6, 6, 6]

[5, 5, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 3

2

3

3

[]

[]

AppendEntries
Term: 5
LeaderID: 1
PrevLogIndex: 5
PrevLogTerm: 4
LeaderCommit: 5

prevLogIndex = 5
S1 log[5] = 4
S2 log[5] = 2

Mismatch!

1 1 1

1 1 1 3 4

3 4

1 1 1 2 2 2

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 5

1

5

5

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 5

1

5

5

[6, 6, 6]

[5, 5, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 5

-1

3

3

[]

[]

AppendEntriesReply
Term: 5
Success: False

1 1 1

1 1 1 3 4

3 4

1 1 1 2 2 2

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 5

1

5

5

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 5

1

5

5

[6, 6, 5]

[5, 5, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 5

-1

3

3

[]

[]

AppendEntries
Term: 5
LeaderID: 1
PrevLogIndex: 4
PrevLogTerm: 3
LeaderCommit: 5

4

prevLogIndex = 4
S1 log[4] = 3
S2 log[4] = 2

Mismatch!

1 1 1

1 1 1 3 4

3 4

1 1 1 2 2 2

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 5

1

5

5

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 5

1

5

5

[6, 6, 5]

[5, 5, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 5

-1

3

3

[]

[]

AppendEntriesReply
Term: 5
Success: False

1 1 1

1 1 1 3 4

3 4

1 1 1 2 2 2

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 5

1

5

5

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 5

1

5

5

[6, 6, 4]

[5, 5, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 5

-1

3

3

[]

[]

AppendEntries
Term: 5
LeaderID: 1
PrevLogIndex: 3
PrevLogTerm: 1
LeaderCommit: 5

3 4

prevLogIndex = 3
S1 log[3] = 1
S2 log[3] = 1

Match!

1 1 1

1 1 1 3 4

3 4

1 1 1 2 2 2

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 5

1

5

5

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 5

1

5

5

[6, 6, 4]

[5, 5, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 5

-1

5

5

[]

[]

AppendEntriesReply
Term: 5
Success: True

1 1 1

1 1 1 3 4

3 4

1 1 1 2 2 2

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 5

1

5

5

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 5

1

5

5

[6, 6, 6]

[5, 5, 5]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 5

-1

5

5

[]

[]

Everyone is on the

same page again

1 1 1

1 1 1 3 4

3 4

1 1 1 3 4

Optimization to reduce

number of messages?

Key Idea

● Reduce the number of rejected AppendEntries RPCs

● One RPC per conflicting term, rather than one RPC per conflicting entry

Detailed Algorithm:

● When rejecting an AppendEntries request, the follower can include the term

of the conflicting entry and the first index it stores for that term.

● With this information, the leader can decrement nextIndex to bypass all of the

conflicting entries in that term.

● See page 7-8 in Raft (extended version)

https://raft.github.io/raft.pdf

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 5

1

5

5

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 5

1

5

5

[6, 6, 6]

[5, 5, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 3

2

3

3

[]

[]

1 1 1

1 1 1 3 4

3 4

AppendEntries
Term: 5
LeaderID: 1
PrevLogIndex: 5
PrevLogTerm: 4
LeaderCommit: 5

1 1 1 2 2 2

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 5

1

5

5

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 5

1

5

5

[6, 6, 6]

[5, 5, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 5

-1

3

3

[]

[]

AppendEntriesReply
Term: 5
Success: False
ConflictTerm: 2
ConflictFirstIndex: 4Specify the conflicting

term and the first index of

this term

1 1 1

1 1 1 3 4

3 4

1 1 1 2 2 2

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 5

1

5

5

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 5

1

5

5

[6, 6, 4]

[5, 5, 0]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 5

-1

3

3

[]

[]

AppendEntries
Term: 5
LeaderID: 1
PrevLogIndex: 3
PrevLogTerm: 1
LeaderCommit: 5

3 4

1 1 1

1 1 1 3 4

3 4

1 1 1 2 2 2

Leader sends its log

entries that are different

from the follower’s

starting the specified

conflicting term

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

0 5

1

5

5

[]

[]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

1 5

1

5

5

[6, 6, 6]

[5, 5, 5]

currentTerm

votedFor

commitIndex

lastApplied

nextIndex

matchIndex

2 5

-1

5

5

[]

[]

Key Idea:

Decrement nextIndex
one term at a time

1 1 1

1 1 1 3 4

3 4

1 1 1 3 4

1. The entry exists on a majority AND was appended to leader in the current term

2. Or, the entry precedes another entry that is committed

Conditions for committing an entry

Caveat for committing old entries

S1 is the leader

S1.log[2] is only

partially
replicated...

Can’t assume an old entry has been committed even if it exists on a majority

Caveat for committing old entries

Can’t assume an old entry has been committed even if it exists on a majority

S1 crashes,

S5 becomes leader

Caveat for committing old entries

S5 crashes,

S1 becomes leader

S1.log[2] is now

replicated to a
majority

Can’t assume an old entry has been committed even if it exists on a majority

Caveat for committing old entries

S1 crashes,

S5 becomes leader

S5 replicates

S5.log[2] to all other
nodes...

Can’t assume an old entry has been committed even if it exists on a majority

Caveat for committing old entries

Entry 2 was overwritten

even though it was

replicated on a majority!

Cannot assume entry 2

was committed

Can’t assume an old entry has been committed even if it exists on a majority

Caveat for committing old entries

Entry 2 is committed once

entry 3 is committed

Commit old entries

indirectly

S1 commits entry 3

Can’t assume an old entry has been committed even if it exists on a majority

Exercise...

Rules for deciding which log is more up-to-date:

● Compare index and term of last entries in the logs

● If the terms are different: log with later term is more up-to-

date

● If the terms are the same: longer log is more up-to-date

Q1: Is this a possible configuration?

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

1

1

1

1

1

2

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

1

1

1

1

1

2

1 1 1

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

1

1

1

1

1

2

1 1 1

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

1

1

1

1

1

2

1 1 1

2

2

2

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

1

1

1

1

1

2

1 1 1

2

2

2

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

1

1

1

1

1

2

1 1 1

2

2

2

Trace the steps...

1

1

1

S0

S1

S2

1

S3

S4

1

1

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

1

1

1

1

1

2

1 1 1

2

2

2

3

3

3

Q2: Is this a possible configuration?

1 1 2 3

1 1

1 1 2 3

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

2 3

4 52 31

4

S3 cannot become leader in term 4

(Who’s going to vote for him?)

NO!

Q3: Is this a possible configuration?

1 1 5 6

1 1

1 1 5 6

S0

S1

S2

1 1 1 1 1

S3

S4

1 1

5 6

4 52 31

4

What happened to terms 2 and 3?

Yes

1. Split vote: no one became leader

2. Partitions: no one became leader

3. Simply no requests in these terms

Q4: Is this a possible configuration?

1 1

1 1

1 1

S0

S1

S2

42 31

3

31 NO!
Let’s try tracing the steps...

Q4: Is this a possible configuration?

1 1

1 1

1 1

S0

S1

S2

42 31

1

1 1

1 1

1 1

S0

S1

S2

42 31

3

31

Q4: Is this a possible configuration?

1 1

1 1

1 1

S0

S1

S2

42 31

1

1 1

1 1

1 1

S0

S1

S2

42 31

3

31

No one becomes leader in term 2...

Q4: Is this a possible configuration?

1 1

1 1

1 1

S0

S1

S2

42 31

1

1 1

1 1

1 1

S0

S1

S2

42 31

3

31

3

Q4: Is this a possible configuration?

1 1

1 1

1 1

S0

S1

S2

42 31

1

1 1

1 1

1 1

S0

S1

S2

42 31

3

31

3

Q4: Is this a possible configuration?

1 1

1 1

1 1

S0

S1

S2

42 31

1

1 1

1 1

1 1

S0

S1

S2

42 31

3

31

3

S0 previously voted for S2 in term 3

S0 can only vote for S1 for term 4!

4

Q4: Is this a possible configuration?

1 1

1 1

1 1

S0

S1

S2

42 31

3

31

The two entries in term are in

different positions

S1 and S2 could not have written

these entries without being leaders

3

But they can’t both be leaders in

the same term!

1. The entry exists on a majority AND was appended to leader in the current term

2. Or, the entry precedes another entry that is committed

Conditions for committing an entry

Q5: Is entry 2 (term 2) guaranteed to be committed?

1

1

1

S0

S1

S2

21

2

2

S3

S4 1

1

Entry 2 is on a majority of nodes

No one else has a more up-to-date log

Yes!

2

Q6: Is entry 2 (term 2) guaranteed to be committed?

1

1

1

S0

S1

S2

21

S3

S4 1

1

(See Figure 8 in Raft paper)

NO!
2

2

2

3
S3 could win the election for Term 3, before Term 2 was replicated on

S2 (with cotes from S2, S3, S4), then S3 crashes and the previous

leader continued replicating Term 2 on S2 (similar to Figure 8 in the

paper)

4

3

Q7: Is entry 2 (term 2) guaranteed to be committed?

1

1

1

S0

S1

S2

21

S3

S4 1

1

S3 could still become leader if S0 crashes

(votes from S2, S3 and S4)

NO!

3

2

2

2

3

4

4

Q8: Is entry 2 (term 2) guaranteed to be committed?

1

1

1

S0

S1

S2

21

S3

S4 1

1

Entry 4 is guaranteed to be committed

because no one else has a more up-to-

date log, and majority has entry 4

All entries before entry 4 are safe

Yes!

3

2

2

2

3

4

4

4

2 4

	Slide 1: Raft
	Slide 2: Raft
	Slide 3: Recap: Raft Leader election
	Slide 4: Conditions for granting vote
	Slide 7
	Slide 8
	Slide 9: Scenario 1: During System Bootup
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Scenario 2: During Normal Execution (suppose there are existing log entries…)
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Conditions for granting vote
	Slide 21: Which one is more up-to-date?
	Slide 22: Which one is more up-to-date?
	Slide 23: Which one is more up-to-date?
	Slide 24: Why reject logs that are not up-to-date?
	Slide 25: What if we accept logs that are not as up-to-date as ours?
	Slide 26: S0
	Slide 27: S0
	Slide 28: S0
	Slide 29: Raft Normal Operation
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Raft After new leader election
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Later, the network partition is fixed …
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: When log entries don’t match...
	Slide 56: When log entries don’t match...
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: Optimization to reduce number of messages?
	Slide 66: Key Idea
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: Conditions for committing an entry
	Slide 72: Caveat for committing old entries
	Slide 73: Caveat for committing old entries
	Slide 74: Caveat for committing old entries
	Slide 75: Caveat for committing old entries
	Slide 76: Caveat for committing old entries
	Slide 77: Caveat for committing old entries
	Slide 78: Exercise...
	Slide 79: Q1: Is this a possible configuration?
	Slide 80: Trace the steps...
	Slide 81: Trace the steps...
	Slide 82: Trace the steps...
	Slide 83: Trace the steps...
	Slide 84: Trace the steps...
	Slide 85: Trace the steps...
	Slide 86: Trace the steps...
	Slide 87: Trace the steps...
	Slide 88: Q2: Is this a possible configuration?
	Slide 89: Q3: Is this a possible configuration?
	Slide 90: Q4: Is this a possible configuration?
	Slide 91: Q4: Is this a possible configuration?
	Slide 92: Q4: Is this a possible configuration?
	Slide 93: Q4: Is this a possible configuration?
	Slide 94: Q4: Is this a possible configuration?
	Slide 95: Q4: Is this a possible configuration?
	Slide 96: Q4: Is this a possible configuration?
	Slide 97: Conditions for committing an entry
	Slide 98: Q5: Is entry 2 (term 2) guaranteed to be committed?
	Slide 99: Q6: Is entry 2 (term 2) guaranteed to be committed?
	Slide 100: Q7: Is entry 2 (term 2) guaranteed to be committed?
	Slide 101: Q8: Is entry 2 (term 2) guaranteed to be committed?

