System Implementation Strategies
+ Paxos
October 2025

Lindsey Kuper (@lindsey@recurse.social)
@lindsey

"Oh, you wanted to *increment a counter*?! Good luck with that!" -- the
distributed systems literature

2:55PM - Mar 9, 2015

358 Reposts 15 Quotes 714 Likes 23 Bookmarks

O 0 5, [] 23

[~

Overview

e Successful System Implementation Strategies
Understand the Concepts and Code Structure
Iterative Design Process

Modular Programming

Tips on Debugging

©)
©)
©)
©)

e Paxos

Understanding Concepts and Code Structure

Understand the Concept and Code Structure

e What is the conceptual system you want to build?

o Understand the concept and verify your knowledge with some examples
o Rewrite the algorithm to some , Which can serve as the guide during actual
programming

e How is the system physically built?

o Read the skeleton code
o Map the algorithms/concepts to the given code structure
o to understand the code flow

e How to use the system?

o Read the testing script to see how an external user will talk to our system and invoke its APIs
to accomplish desired tasks

Build > Usage >
Understand Concept and Code Structure

e Fully comprehend the algorithm
e Spend time to map your understanding of the concept to the starter code
o For both the system interface and individual modules, understand what
data is transferred between and how

e (Charts and pseudocode can help ALOT!

> Concept Usage >

How is the System Physically Built?

Understand the simulator’s implementation (see simulator.go)

e The role of the simulator
e Methods it uses to interact with the server module

/

\

~

StartSnapshot(server_id)

Server 3

NotifySnapshotComplete
(server_id, snap_id)

‘//’/////////

)

Simulator

CollectSnapshot ‘\\\\\\\\\\\\\\
(snap_id)

Server 2

> Concept Usage >
How is the System Physically Built?

Understand the server’s implementation (see server.go)

e Methods it uses to communicate with each other HandlePacket
e Methods it uses to take a local snapshot (msg)
SendTokens () l
HandlePacket ‘////// StartSnapshot
(msg) //////' (snap_id)
R l Server 3
Tick() StartSnapshot
— (snap_id) j f SendTokens() ...
Server 1 HandlePacket
(msg)
— ~;
Simulator SendTokens () l
StartSnapshot
(snap_id)

Server 2

> Concept > Build

How to Use the System?

Understand how the external environment talks to our system
(see test_ common.go and snapshot_test.go)

j InjectEvents()
:)
Topology Event File
File

Global Snapshot -

Server 3

-

Simulator

Server 2

©

lterative Design Process

lterative Design Process

Common design methodology in product
design, including software design

You will understand a little more about your
design when you start implementing it.

e Start with the base case (aka simplest

case)
o Example: one global snapshot at a time for
Assignment 2, distributed MapReduce
without any failure for Assignment 1.3

e Testregularly: should pass test case
for 2 nodes, then 3 nodes and ...

e Add one more complexity at a time

Iterative design process

P
Design S Test
prototype prototype in
and/or laboratory
refine
features

v

Evaluate { " Refine
prototype with prototype
users in diverse design

settings

Image Source from the Internet

11

lterative Design Process: Distributed Snapshot

Key Idea: Start Simple, then Build Up

When passing alljnon-concurrent tests

I

I

I

I

I

Testing |
| Final design with :
I

I

I

I

I

I

one snapshot at a
time

Implementation A

e\® concurrent snapshots

I

I

I

I

I

I

: Simple design with |
I pov
I

I

I

I

I

3
o
Q)
3
o
5
—~
Q
=3
o
-

Modular Programming

Modular Programming

lterative design means code change every time when refining the design =

Modular programming

e Decompose the system into several independent modules/pieces
e Use a set of simple yet flexible APls for intra-module communication

Advantages of modular programming

e Makes it easier to reason about and debug each component of your system

e Requires minimal change in the code

14

Modular Programming

Phase 1: single snapshot at a time

Divide our server module into 3 pieces:

e Server State
e Execution logic

e Alayer of helper functions

Goal: write a flexible layer of helper
functions

Server Module

|

Helper Functions API

|

Execution Logic

func HandlePacket(...) {
case TokenMessage:
// Do something
case MarkerMessage:

4

15

Modular Programming: Single Snapshot

// ID of the current snapshot
int (init to -1)

// State of the current snapshot

snapState: SnapshotState

// Track if each incoming
channel has seen a marker
message (default to false)
receivedMarker:

map(source channel, bool)

Helper Functions API

func updateSnapshot(src, msg) {

snapMsg = SnapshotMessage(src, msg)
snapState.messages.append(snapMsg)

}

func setReceivedMarker(src) {
receivedMarker[src] = true

}

func firstMarkerMsg(snap_id) {
return I= snap_id

}

Func receiveAllMarkers() {
return receivedMarker.size ==
inboundLinks.size

}

Execution Logic

func HandlePacket(...) {

) 4

func HandlePacket(src, msg) {

case TokenMessage:
updateSnapshot(src, msg)
// Also, update server’s local
state
case MarkerMessage:
snap_id = getSnapId(msg)
if firstMarkerMsg(snap_id) {
StartSnapshot(snap_id)
} else {
setReceivedMarker(src)
if receiveAllMarkers() {
// Notify simulator of the
completion
} 16
}

Modular Programming

Phase 2: concurrent snapshots

e Update the state variables and
helper functions’ implementation

e Keep the API and execution logic
unmodified (almost)

Server Module

gl

|

Helper Function

|

e
Execution Logic Lie G“a“g

func HandlePacket(...) {
case TokenMessage:
// Do something
case MarkerMessage:

_— p

®

17

Modular Programming: Concurrent Snapshots

// States of concurrent snapshots
// map snapshot ID to its state
snapStates: map(int, SnapshotState)

// For each snapshot, track if each
incoming channel has seen a marker
message (default to false)
receivedMarker:

map(int, map(source channel, bool))

1. Update state variables

Helper Functions API

func updateSnapshot(snap_id, src, msg) {
snapMsg = SnapshotMessage(src, msg)

snapStates[snap_id].messages.append(snapMsg)

}

func setReceivedMark(snap_id, src) {
receivedMarker[snap_id][src] = true

}

func firstMarkerMsg(snap_id) {
return (snap_id in snapStates.keys())

}

Func receiveAllMarkers(snap_id) {
return receivedMarker[snap_id].size ==
inboundLinks.size }

2. Update helper functions while
keeping most of its API intact

=

Execution Logic

func HandlePacket(...) {

}

4

func HandlePacket(src, msg) {

case TokenMessage:
for snap_id in snapStates.keys() {
updateSnapshot(snap_id, src, msg)
¥
// Also, update server’s local state
case MarkerMessage:
snap_id = getSnapId(msg)
if firstMarkerMsg(snap_id) {
StartSnapshot(snap_id)
} else {
setReceivedMarker(snap_id, src)
if receiveAllMarkers(snap_id) {
// Notify simulator of the
completion
}
}
3. Minimal change on execution logic

18

Tips for Debugging

Tips on Debugging

e Start Early! (This is imperative for Assignment #4)
e Commit your code to Git often and early, and every time when you pass a
new test (enable comparative debugging later if necessary)

e Have proper naming for variables and add comments in your code
o Easier for both you and others to read and debug your code

e Take advantage of Go Playground if you are not familiar with any Go specifics
e Print statements are your friend!

* Read this ASAP Debugging by Pretty Printing

Debugging distributed systems is a hard task. We can make this task easier by making

use of good logging practices and taking advantage of Terminal User Interface tools,
making parsing distributed logs effortless.

Blog About RSS 20

https://play.golang.org/
https://blog.josejg.com/debugging-pretty/

Prints Are Your Friend ©

e Always verify the behavior of your program! Sometimes, it may not align with
your expectation because of some hidden bugs.

e Track execution using printing statements to understand the code flow
o Especially helpful in the early development of your design when the code complexity is not too
high
e Help catch errors in the early stage
e Example

o InAssignment 2, we can print out the server state before and after HandlePacket () and

StartSnapshot() that you implement after each tick of the simulator

21

Paxos Made Simple

Leslie Lamport

01 Nov 2001

Paxos

Abstract

The Paxos algorithm, when presented in plain English, is very simple.

1 Introduction

The Paxos algorithm for implementing a fault-tolerant distributed system
has been regarded as difficult to understand, perhaps because the original
presentation was Greek to many readers [5]. In fact, it is among the sim-
plest and most obvious of distributed algorithms. At its heart is a consensus
algorithm—the “synod” algorithm of [5]. The next section shows that this
consensus algorithm follows almost unavoidably from the properties we want
it to satisfy. The last section explains the complete Paxos algorithm, which
is obtained by the straightforward application of consensus to the state ma-
chine approach for building a distributed system—an approach that should
be well-known, since it is the subject of what is probably the most often-cited
article on the theory of distributed systems [4].

22

Paxos is all about consensus

Consensus

Given a set of processors, each with an initial value:

« Termination: All non-faulty processes eventually decide on a
value

« Agreement: All processes that decide do so on the same value

« Validity: Value decided must have proposed by some process

23

Review of Paxos [High-Level]

Phase 3: Acceptors

|
|
|
. - Phase 2: Proposal |
Phase 1: Prepare/Election P i Broadcast
(\ (| Accepted Values to
| learners
! >
|
|
ACK |
ACK |
I >
|
Prepare (Please Value v, |
choose me!) accept? i
i T

Any node can be a learner. The Phase 2 ACK to
the proposer can double as the acceptors’
broadcast to learners if we assume that the

- Proposer E Acceptor proposer also acts as a learner.

Review of Paxos [Detailed]

Phase 1: Prepare/Election

>

<prepare, n>
. >

n: prepare id
>

n < n_highest
This acceptor has seen a prepare message with

a higher prepare _id
- Proposer |:|Acceptor J brepare._ 2

Review of Paxos [Detailed]

Phase 1: Prepare/Election

<prepare, n>

n: prepare id

Both acceptors accept and update their n_highest = n
Assumption: None of them had accepted other
proposals before

26

]] So here the proposer has to retry with
Review of Paxos [Detalled] the v_a, instead of its own proposed
value [Do not race, just complete the

duty of the previous proposer
Phase 1: Prepare/Election y P prop]

>

<prepare, n>
. >

n: prepare id
>

Both acceptors accept and update their n_highest = n
Assumption: One of them accepted an older proposal

- Proposer E| Acceptor before [the proposal made by n_a prepare round]

27

Review of Paxos [Detailed]

Paxos Phase 2

— If receive promise from of acceptors,

-U

Determine v, returned with highest n,, if exists
Send kaccept, (n, v, || v)>| to acceptors

on receiving (n, v), if n = n,,

Accept proposal and notify learner(s)

28

Let’'s practice

e In this example, we have 5 processes. All of them are learners.

e All of them might become proposers and acceptors at different times.

P1 P2 P3 P4 P5

Each prepare/proposal needs at least (5+1)/2 = 3 ACK [including itself]
Green Arrows are ACK and Red ones are REJECT.

Let’s practice: Failed Prepare

P1: Prepare(1) i P2: Prepare(2)
P1 / : /
=N/
P3 | >

\NZ4 :
\/ :

Pink Arrows are slow communications, still on-route 30

P4

PS5

Each prepare/proposal needs at least (5+1)/2 = 3 ACK [including itself]

Green Arrows are ACK and Red ones are REJECT.

Let’s practice: Failed Prepare

P1: Prepare(1) P2: Prepare(2)

P1 Failed to get the majority

<>

))
=N\ /4

g A

PS5

L7

|
Pink Arrows are slow communicat!ions, still on-route

31

 JE T R B

Let’s practice: Racing

P1

P1: Propose(val=10)

N/

|\

P4

VRN AN

PS5

\
X/ P3: Prepare<2§\'/ \\\
|

>

But before the proposal arrive at {P3, P4, P5}, P3 starts prepare with higher id

And {P4, P5} accepts the new prepare! So P3 wins the prepare too.

33

Some of the late arrows that will arrive in future
and get rejected are not shown for readability.

Let’s practice: Racing

The old proposal value of P1 is now declined, because there was a higher new prepare.

P1: Propose(val=10)
P1

o N/ /A
S/ ,

=1 VRN AW/ ,

e/

P2 also accepts the prepare from P3, but sends the previously accepted value 10 to P3 34

Some of the late arrows that will arrive in future
and get rejected are now shown for readability.

Let’s practice: Racing

P1: Propose(val=10)
P1

o /A
G/ —

= VRN R/ ,

=RV VA

P3 starts proposal with the same value=10! 35

///

Some of the late arrows that will arrive in future
and get rejected are now shown for readability.

Let’s practice: Racing

///

= /i /A
i W/ <

=l \W4 /AN //
V=V \/

4

PS5

If at least 2 other processes ACK, we’re all good! 10 is
P3 starts proposal with the same value=10! decided and P3’s proposal is complete 36

P1: Propose(val=10) .

/A RaW/A < o
\\ I NI/
| [

P3 starts proposal with the same value=10!

4>

Takeaway

What we saw was safe!
Whenever an accept happens it respects previously accepted values.
But liveness failed
e Because two proposers continually preempt each other
e Accept phases never gather a majority of accepts.
e Higher proposal numbers keep invalidating earlier attempts, so no progress is made
until one proposer stops or the network schedules deliver differently.
e In practice people inject artificial delays between processes so they don'’t race

concurrently and there is some delay!

