
System Implementation Strategies
+ Paxos
October 2025

1

2

Overview

● Successful System Implementation Strategies
○ Understand the Concepts and Code Structure
○ Iterative Design Process
○ Modular Programming
○ Tips on Debugging

● Paxos

3

Understanding Concepts and Code Structure

4

Understand the Concept and Code Structure

● What is the conceptual system you want to build?
○ Understand the concept and verify your knowledge with some examples
○ Rewrite the algorithm to some pseudocode, which can serve as the guide during actual

programming
● How is the system physically built?

○ Read the skeleton code
○ Map the algorithms/concepts to the given code structure
○ Draw flow charts to understand the code flow

● How to use the system?
○ Read the testing script to see how an external user will talk to our system and invoke its APIs

to accomplish desired tasks

5

Concept

Build

Usage

Understand Concept and Code Structure

● Fully comprehend the algorithm

● Spend time to map your understanding of the concept to the starter code

○ For both the system interface and individual modules, understand what

data is transferred between and how

● Charts and pseudocode can help A LOT!

6

Concept Build Usage

How is the System Physically Built?

Understand the simulator’s implementation (see simulator.go)
● The role of the simulator
● Methods it uses to interact with the server module

Server 1

Server 3

Server 2

...

Simulator

StartSnapshot(server_id)

NotifySnapshotComplete
(server_id, snap_id)

CollectSnapshot
(snap_id)

7

Concept Build Usage

How is the System Physically Built?

Understand the server’s implementation (see server.go)
● Methods it uses to communicate with each other
● Methods it uses to take a local snapshot

Server 3

...

Simulator

StartSnapshot
(snap_id)

HandlePacket
(msg)

Server 2

HandlePacket
(msg)

Server 1

HandlePacket
(msg)

Tick()

SendTokens()

SendTokens()

SendTokens()

8

StartSnapshot
(snap_id)

StartSnapshot
(snap_id)

Concept Build Usage

How to Use the System?

Understand how the external environment talks to our system
(see test_common.go and snapshot_test.go)

Server 1

Server 3

Server 2

...

Simulator

Topology
File

Event File

InjectEvents()

Global Snapshot

9

Concept Build Usage

Iterative Design Process

10

Iterative Design Process

Common design methodology in product
design, including software design

You will understand a little more about your
design when you start implementing it.

● Start with the base case (aka simplest
case)

○ Example: one global snapshot at a time for
Assignment 2, distributed MapReduce
without any failure for Assignment 1.3

● Test regularly: should pass test case
for 2 nodes, then 3 nodes and …

● Add one more complexity at a time

Image Source from the Internet

11

Iterative Design Process: Distributed Snapshot

Key Idea: Start Simple, then Build Up

Phase 1: single snapshot at a time Phase 2: concurrent global snapshots

Simple design with
one snapshot at a
time

Implementation

Testing
Final design with
concurrent snapshots

Implementation

Testing

Done!☺

When passing all non-concurrent tests

12

Modular Programming

13

Modular Programming

Iterative design means code change every time when refining the design ☹
Modular programming

● Decompose the system into several independent modules/pieces
● Use a set of simple yet flexible APIs for intra-module communication

Advantages of modular programming

● Makes it easier to reason about and debug each component of your system
● Requires minimal change in the code

14

Modular Programming
State

Phase 1: single snapshot at a time

Divide our server module into 3 pieces:

Server Module

Helper Functions API

Execution Logic

func HandlePacket(...) {
 case TokenMessage:
 // Do something
 case MarkerMessage:
 ...
}

15

● Execution logic

● Server State

● A layer of helper functions

Goal: write a flexible layer of helper
functions

Modular Programming: Single Snapshot

State Helper Functions API

Execution Logic

func HandlePacket(...) {
 ...
}

// ID of the current snapshot
snapId: int (init to -1)

// State of the current snapshot
snapState: SnapshotState

// Track if each incoming
channel has seen a marker
message (default to false)
receivedMarker:
map(source channel, bool)

func HandlePacket(src, msg) {
 ...
 case TokenMessage:
 updateSnapshot(src, msg)
 // Also, update server’s local
state
 case MarkerMessage:
 snap_id = getSnapId(msg)
 if firstMarkerMsg(snap_id) {
 StartSnapshot(snap_id)
 } else {
 setReceivedMarker(src)
 if receiveAllMarkers() {
 // Notify simulator of the
completion
 }
}

func updateSnapshot(src, msg) {
 snapMsg = SnapshotMessage(src, msg)
 snapState.messages.append(snapMsg)
}

func setReceivedMarker(src) {
 receivedMarker[src] = true
}

func firstMarkerMsg(snap_id) {
 return snapId != snap_id
}

Func receiveAllMarkers() {
 return receivedMarker.size ==
inboundLinks.size
}

16

Modular Programming
State

Phase 2: concurrent snapshots

● Update the state variables and
helper functions’ implementation

● Keep the API and execution logic
unmodified (almost)

Server Module

Helper Functions API

Execution Logic

func HandlePacket(...) {
 case TokenMessage:
 // Do something
 case MarkerMessage:
 ...
}

17

Little change☺

Some change

Some change

Modular Programming: Concurrent Snapshots

State Helper Functions API

Execution Logic

func HandlePacket(...) {
 ...
}

// States of concurrent snapshots
// map snapshot ID to its state
snapStates: map(int, SnapshotState)

// For each snapshot, track if each
incoming channel has seen a marker
message (default to false)
receivedMarker:
map(int, map(source channel, bool))

func HandlePacket(src, msg) {
 ...
 case TokenMessage:
 for snap_id in snapStates.keys() {
 updateSnapshot(snap_id, src, msg)
 }
 // Also, update server’s local state
 case MarkerMessage:
 snap_id = getSnapId(msg)
 if firstMarkerMsg(snap_id) {
 StartSnapshot(snap_id)
 } else {
 setReceivedMarker(snap_id, src)
 if receiveAllMarkers(snap_id) {
 // Notify simulator of the
completion
 }
}

func updateSnapshot(snap_id, src, msg) {
 snapMsg = SnapshotMessage(src, msg)

snapStates[snap_id].messages.append(snapMsg)
}

func setReceivedMark(snap_id, src) {
 receivedMarker[snap_id][src] = true
}

func firstMarkerMsg(snap_id) {
 return (snap_id in snapStates.keys())
}

Func receiveAllMarkers(snap_id) {
 return receivedMarker[snap_id].size ==
inboundLinks.size }

181. Update state variables
2. Update helper functions while

keeping most of its API intact 3. Minimal change on execution logic

Tips for Debugging

19

Tips on Debugging

● Start Early! (This is imperative for Assignment #4)
● Commit your code to Git often and early, and every time when you pass a

new test (enable comparative debugging later if necessary)
● Have proper naming for variables and add comments in your code

○ Easier for both you and others to read and debug your code
● Take advantage of Go Playground if you are not familiar with any Go specifics
● Print statements are your friend!
● Read this ASAP

20

https://play.golang.org/
https://blog.josejg.com/debugging-pretty/

Prints Are Your Friend ☺

● Always verify the behavior of your program! Sometimes, it may not align with

your expectation because of some hidden bugs.

● Track execution using printing statements to understand the code flow
○ Especially helpful in the early development of your design when the code complexity is not too

high

● Help catch errors in the early stage

● Example
○ In Assignment 2, we can print out the server state before and after HandlePacket() and

StartSnapshot() that you implement after each tick of the simulator

21

Paxos

22

23

Paxos is all about consensus

24

Review of Paxos [High-Level]

Prepare (Please
choose me!)

ACK

Proposer Acceptor

Phase 1: Prepare/Election

Value v,
accept?

ACK

Phase 2: Proposal Phase 3: Acceptors
Broadcast

Accepted Values to
learners

Any node can be a learner. The Phase 2 ACK to
the proposer can double as the acceptors’
broadcast to learners if we assume that the

proposer also acts as a learner.

25

Review of Paxos [Detailed]

<prepare, n>

n: prepare id

n < n_highest
This acceptor has seen a prepare message with
a higher prepare_id

Proposer Acceptor

Phase 1: Prepare/Election

ACK

Reject

26

Review of Paxos [Detailed]

<prepare, n>

n: prepare id

Both acceptors accept and update their n_highest = n
Assumption: None of them had accepted other
proposals beforeProposer Acceptor

Phase 1: Prepare/Election

<Promise, n , ∅>

<Promise, n , ∅>

27

Review of Paxos [Detailed]

<prepare, n>

n: prepare id

Both acceptors accept and update their n_highest = n
Assumption: One of them accepted an older proposal
before [the proposal made by n_a prepare round]Proposer Acceptor

Phase 1: Prepare/Election

<Promise, n , (n_a, v_a)>

<Promise, n , ∅>

So here the proposer has to retry with
the v_a, instead of its own proposed
value [Do not race, just complete the
duty of the previous proposer]

28

Review of Paxos [Detailed]

29

Let’s practice

P1

● In this example, we have 5 processes. All of them are learners.

● All of them might become proposers and acceptors at different times.

P2 P3 P4 P5

30

P1

P2

P3

P4

P5

P1: Prepare(1)

Pink Arrows are slow communications, still on-route

P2: Prepare(2)

P2 Got the Majority

Let’s practice: Failed Prepare

Each prepare/proposal needs at least (5+1)/2 = 3 ACK [including itself]
Green Arrows are ACK and Red ones are REJECT.

31

Let’s practice: Failed Prepare

P1

P2

P3

P4

P5

P1: Prepare(1)

Pink Arrows are slow communications, still on-route

P2: Prepare(2)

P2 Got the Majority

P1 Failed to get the majority

Each prepare/proposal needs at least (5+1)/2 = 3 ACK [including itself]
Green Arrows are ACK and Red ones are REJECT.

32

Let’s practice: Racing

P1

P2

P3

P4

P5

Successful Prepare Phase; Now P1 can propose!

P1: Prepare(1)

33

Let’s practice: Racing

P1

P2

P3

P4

P5

P3: Prepare<2>

P1: Propose(val=10)

But before the proposal arrive at {P3, P4, P5}, P3 starts prepare with higher id

And {P4, P5} accepts the new prepare! So P3 wins the prepare too.

34

Let’s practice: Racing

P1

P2

P3

P4

P5

P3: Prepare<2>

P1: Propose(val=10)

Some of the late arrows that will arrive in future
and get rejected are not shown for readability.

P2 also accepts the prepare from P3, but sends the previously accepted value 10 to P3

The old proposal value of P1 is now declined, because there was a higher new prepare.

35

Let’s practice: Racing

P1

P2

P3

P4

P5

P3: Prepare<2>

P1: Propose(val=10)

Some of the late arrows that will arrive in future
and get rejected are now shown for readability.

P3 starts proposal with the same value=10!

P3: Propose(val=10)

36

Let’s practice: Racing

P1

P2

P3

P4

P5

P3: Prepare<2>

P1: Propose(val=10)

Some of the late arrows that will arrive in future
and get rejected are now shown for readability.

P3 starts proposal with the same value=10!

P3: Propose(val=10)

If at least 2 other processes ACK, we’re all good! 10 is
decided and P3’s proposal is complete

37

Let’s practice: Racing

P1

P2

P3

P4

P5

P3: Prepare<2>

P1: Propose(val=10)

P3 starts proposal with the same value=10!

P3: Propose(val=10)

But what if (similar to P1’s proposal), some process send
<prepare> with a higher id before at least 2 processes ACK to
P3’s proposal?

P4: Prepare<3>

38

This can repeat indefinitely: before any proposal round completes,
another process
● starts a new one,
● wins the majority in the prepare phase, and
● causes previous proposals to be rejected.
● The new leader then tries to finish the proposal (with the old

value), but is interrupted again — and the cycle continues.

Takeaway

What we saw was safe!

Whenever an accept happens it respects previously accepted values.

But liveness failed

● Because two proposers continually preempt each other

● Accept phases never gather a majority of accepts.

● Higher proposal numbers keep invalidating earlier attempts, so no progress is made

until one proposer stops or the network schedules deliver differently.

● In practice people inject artificial delays between processes so they don’t race

concurrently and there is some delay!

