
Distributed Snapshots
September 2025

1

A Note on Channels and Goroutines

● Using channels is easy, debugging them is hard…

Bullet-proof way: Keep track of how many things go in and go out

Always ask yourself: is this channel buffered?

● In general, don’t use locks or atomic operations with channels (awkward)

● Try not to nest goroutines (would be hard to reason about them)

2

Review of Snapshot Fundamentals

3

N1 N2 N3 N4

Taking a panorama with a moving object in the scene.

Distributed snapshots are hard

Must ensure state is not duplicated across the cluster (we only want one dog)

Must ensure state is not lost across the cluster (we still want the dog there)

We must carefully consider how and when exactly to record state.

Event order:

1.Snap N1

2.N2 sends body

3.Snap N2

4.N1 receives body

7

Should record

message!

Event order:

1.N2 sends body

2.Snap N2

3.N1 receives body

4.Snap N1

8

N1 already received the body in

step 3

Should NOT record message

Intuition: guarantee zero loss + zero duplication

If you haven’t snapshotted your local state yet:

Do NOT record future messages you receive

If you have snapshotted your local state:

Do record future messages you receive

Which one guarantees zero loss?

Which one guarantees zero duplication?

9

What is a Global Snapshot?

● A global snapshot captures the

global state of a distributed system: A B

C

m2m1

10

○ Local state of each process within

the distributed system

○ Local state of each

communication channel

● These local states are instantaneous

○ e.g messages in transit from one node

to another only exist in transit for a few

milliseconds or less

Global Snapshots are Useful

● Checkpointing

○ Recover more quickly after failures

● Garbage Collection

○ Remove objects that are not referenced any more by other objects/processes at any other

servers

● Deadlock Detection

○ Examine the global application state and identify any deadlocks, useful in transactional

database systems

● And many others …

11

System Model

● N processes in the system

○ Each process keeps track of some state

● There are two unidirectional communication channels between each pair

of processes P and Q

○ FIFO-ordered (First-In-First-Out)

○ Message arrives intact and is unduplicated

○ Each channel also has some state

● No failures

12

Messages and States

● What are the messages?
○ Application messages that differ across systems (e.g “sending $10 from A to B”, “read value at

memory address X and write back with a new value”)

○ Special messages (e.g marker message) that should not interfere with application messages

● What are the states?
○ Process state: application-defined state, or the classic notion of state which includes heap,

registers, program counters and etc

○ Channel state: the set of messages inside

● Tips for Assignment 2
○ See *.top, *.events, *.snap files under ./test_data to understand what states and

messages mean in this assignment

○ Read test_common.go to understand the syntax of the above files, and their relationships

with the simulator 13

Distributed Snapshot

“Distributed Snapshots: Determining Global States of Distributed Systems” 1985,

by K. Mani Chandy and Leslie Lamport

Key Idea: Servers send marker messages to each other

Marker messages

1. Mark the beginning of the snapshot process on the server

2. Act as a barrier (stopper) for recording messages

14

https://lamport.azurewebsites.net/pubs/chandy.pdf

Chandy-Lamport Algorithm

Any process can initiate the snapshot

- Record local state

- Create marker messages and send them to all outbound channels

- Start recording messages from all incoming channels

15

Chandy-Lamport Algorithm Continued

When receiving a marker message from channel C

If this is the first marker message that this process has even seen:

- Record the local state

- Record the state of C as “empty sequence”

- Send out the marker message on all outbound channels

- Start recording messages from all of its other incoming channels

If it has already seen a marker message (e.g. from some other channel)

- Record the state of C as the sequence of messages received since the process’s local

state has been recorded

- Stop recording messages on C (i.e done with recording the channel’s state)

16

Chandy-Lamport Algorithm Continued

When is the algorithm terminated?

- All processes have received marker messages (i.e have recorded their local states)

- All processes have received marker messages from all of their incoming channels (i.e

have recorded the local states of all channels)

- Both need to satisfy

What happens after the termination?

- Optional and out of the scope of Chandy-Lamport algorithm

- Usually, there will be a central server that collects local snapshots from all servers to

build a global snapshot (e.g the simulator in Assignment 2) and maybe run some

computations (e.g deadlock detection) on it

17

See Section 3 of the original paper for more details

https://lamport.azurewebsites.net/pubs/chandy.pdf

Exercises

19

Token Passing Example 1

A B

1 Token 0 Tokens

20

Token Passing Example 1

A B

0 Tokens 0 Tokens

Event order:

1. A sends 1 token

1 Token

21

Token Passing Example 1

A B

0 Tokens 0 Tokens

Event order:

1. A sends 1 token

2. A starts snapshot,
sends marker1 TokenM

22

Token Passing Example 1

A B

0 Tokens 1 Token

Event order:

1. A sends 1 token

2. A starts snapshot,
sends marker

3. B receives 1 token

M

23

Token Passing Example 1

A B

0 Tokens 1 Token

Event order:

1. A sends 1 token

2. A starts snapshot,
sends marker

3. B receives 1 token

4. B receives marker,
starts snapshot

M

24

Token Passing Example 1

A B

0 Tokens 1 Token

Event order:

1. A sends 1 token

2. A starts snapshot,
sends marker

3. B receives 1 token

4. B receives marker,
starts snapshot

5. A receives marker,
ends snapshot

We did not record the token message because B

received it before B started the snapshot process

25

Token Passing Example 2

A B

0 Tokens 1 Token

26

Token Passing Example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

1 Token

27

Token Passing Example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot,
sends marker

1 Token

M

28

Token Passing Example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot,
sends marker

3. A receives 1 token,
records message

1 Token

M

29

Token Passing Example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot,
sends marker

3. A receives 1 token,
records message

4. B receives marker,

starts snapshot1 Token

M

30

Token Passing Example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot,
sends marker

3. A receives 1 token,
records message

4. B receives marker,

starts snapshot

5. A receives marker,

ends snapshot

1 Token

We recorded the token message because A received

it after it has already started the snapshot process

31

Token Passing Example 3

A B

C

M m2m1
Which messages are

definitely recorded*?

Which messages are
definitely not recorded?

Which messages might

be recorded?

* recorded as in-flight messages, i.e.,

as part of channel state rather than

process state

32

Which messages are

definitely recorded*?

Which messages are

definitely not recorded?

Which messages might

be recorded?

*recorded as in-flight messages

Token Passing Example 3

A B

C

M m2m1

m7

m1, m3

m2, m4, m5, m6

33

Takeaways

A B

C

M m2m1

34

❑ Tokens arriving on the incoming

channels of a process that has

already started the snapshot are

recorded as the state of that channel.

❑ Tokens sent on an outbound channel

after a process has sent a marker on

that channel are not included in the

state of the channel.

❑ The channels through which each

process receives the marker for the

first time are recorded to be empty.

Puzzles from the Lecture

35

36

37

P was captured in (Q,P)

1. Process P started the

snapshot before Token P
was received

R was captured in (Q,T)

1. Process T started the

snapshot before Token R
was received

2. It received the marker

back after receiving Token P

2. It received the marker

back after receiving Token R

38

Assignment 2 Overview

● You will implement the Chandy-Lamport snapshot algorithm

● Application is a token passing system

○ Number of tokens must be preserved in your snapshots

● Implementation uses discrete time simulator to order events

○ Simulator manages servers and injects events into the system

○ Server implements the snapshot algorithm

● Allow multiple active snapshot processes

○ E.g, The second snapshot can start before the first snapshot completes in the system

39

Assignment 2 Interfaces

func (sim *Simulator) Tick()

func (sim *Simulator) StartSnapshot(serverId string)

func (sim *Simulator) NotifySnapshotComplete(serverId string, snapshotId int)

func (sim *Simulator) CollectSnapshot(snapshotId int) *SnapshotState

● What kind of state does the simulator need to keep track of?
○ Time

○ Topology

○ Channels to signal the completion of snapshots

○ ...

40

Assignment 2 Interfaces

func (server *Server) SendToNeighbors(message interface{})

func (server *Server) SendTokens(numTokens int, dest string)

func (server *Server) HandlePacket(src string, message interface{})

func (server *Server) StartSnapshot(snapshotId int)

● What kind of state does the server need to keep track of?
○ Local state

○ Neighbors

○ Which channels received markers

○ Recorded messages

○ ...

41

Assignment 2

Start Early

Due October 3 (Friday) at 11:59pm!

42

	Slide 1: Distributed Snapshots
	Slide 2: A Note on Channels and Goroutines
	Slide 3: Review of Snapshot Fundamentals
	Slide 4: Taking a panorama with a moving object in the scene.
	Slide 5
	Slide 6: Distributed snapshots are hard
	Slide 7
	Slide 8
	Slide 9: Intuition: guarantee zero loss + zero duplication
	Slide 10: What is a Global Snapshot?
	Slide 11: Global Snapshots are Useful
	Slide 12: System Model
	Slide 13: Messages and States
	Slide 14: Distributed Snapshot
	Slide 15: Chandy-Lamport Algorithm
	Slide 16: Chandy-Lamport Algorithm Continued
	Slide 17: Chandy-Lamport Algorithm Continued
	Slide 18
	Slide 19: Exercises
	Slide 20: Token Passing Example 1
	Slide 21: Token Passing Example 1
	Slide 22: Token Passing Example 1
	Slide 23: Token Passing Example 1
	Slide 24: Token Passing Example 1
	Slide 25: Token Passing Example 1
	Slide 26: Token Passing Example 2
	Slide 27: Token Passing Example 2
	Slide 28: Token Passing Example 2
	Slide 29: Token Passing Example 2
	Slide 30: Token Passing Example 2
	Slide 31: Token Passing Example 2
	Slide 32: Token Passing Example 3
	Slide 33: Token Passing Example 3
	Slide 34: Takeaways
	Slide 35: Puzzles from the Lecture
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Assignment 2 Overview
	Slide 40: Assignment 2 Interfaces
	Slide 41: Assignment 2 Interfaces
	Slide 42: Assignment 2

