
Concurrency in Go
September 2025

Go Resources

https://tour.golang.org/list

https://play.golang.org

https://gobyexample.com

2

https://tour.golang.org/list
https://play.golang.org
https://gobyexample.com/

Today’s Precept…

1. Two synchronization mechanisms

a. Locks

b. Channels

2. Mapreduce

3

Two synchronization mechanisms

Locks - limit access to a critical section

Channels - pass information across processes using a queue

4

Example: Bank account

5

Thread 1

100

Read b = 100

Bank Account

b = b + 10

Write b = 110 110

Read b = 110

b = b + 10

Write b = 120120

Thread 2

Example: Bank account

6

100

Read b = 100

Bank Account

b = b + 10

Write b = 110 110

Read b = 100

b = b + 10

Write b = 110110

Thread 1 Thread 2

What went wrong?

Changes to balance are not atomic

7

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

What went wrong?

Suppose the function is called in two threads, with the Thread 1 chosen to run first.

8

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

Thread 1 Thread 2

What went wrong?

Suppose the function is called in two threads, with the Thread 1 chosen to run first.

9

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

Thread 1 Thread 2

What went wrong?

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

10

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

Then, an interrupt happens, and the OS scheduler selects Thread 2 to run.

Thread 1 Thread 2

What went wrong?

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

11

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

Thread 1 did not write new balance to shared storage, so Thread 2 reads the old value.

Thread 1 Thread 2

What went wrong?

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

12

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

This is called a race condition.

Thread 1 Thread 2

Solution - Locks

func Deposit(amount) {

lock balanceLock

read balance

balance = balance + amount

write balance

unlock balanceLock

}

13

Changes to balance are now atomic.

Critical section

Good Video Explanations

14

Race Conditions:

https://www.youtube.com/watch?v=FY9livorrJI

Deadlocks:

https://www.youtube.com/watch?v=LjWug2tvSBU

https://www.youtube.com/watch?v=FY9livorrJI
https://www.youtube.com/watch?v=LjWug2tvSBU

Locks in Go

15

package account

import "sync"

type Account struct {
balance int

mu sync.Mutex
}

func (a *Account) Deposit(v int) {
a.mu.Lock()
defer a.mu.Unlock()
a.balance += v

}

func NewAccount(init int) Account {
return Account{balance: init}

}

func (a *Account) CheckBalance() int {
a.mu.Lock()
defer a.mu.Unlock()
return a.balance

}

func (a *Account) Withdraw(v int) {
a.mu.Lock()
defer a.mu.Unlock()
a.balance -= v

}

Locks in Go

16

package account

import "sync"

type Account struct {
balance int
mu sync.Mutex

}

func (a *Account) Deposit(v int) {
a.mu.Lock()
defer a.mu.Unlock()
a.balance += v

}

func NewAccount(init int) Account {
return Account{balance: init}

}

func (a *Account) CheckBalance() int {
a.mu.Lock()
defer a.mu.Unlock()
return a.balance

}

func (a *Account) Withdraw(v int) {
a.mu.Lock()
defer a.mu.Unlock()
a.balance -= v

}

Read Write Locks in Go

17

package account

import "sync"

type Account struct {
balance int

rwLock sync.RWMutex
}

func (a *Account) Deposit(v int) {
a.rwLock.Lock()
defer a.rwLock.Unlock()
a.balance += v

}

func NewAccount(init int) Account {
return Account{balance: init}

}

func (a *Account) CheckBalance() int {
a.rwLock.RLock()
defer a.rwLock.RUnlock()
return a.balance

}

func (a *Account) Withdraw(v int) {
a.rwLock.Lock()
defer a.rwLock.Unlock()
a.balance -= v

}

Read Write Locks in Go

18

package account

import "sync"

type Account struct {
balance int
rwLock sync.RWMutex

}

func (a *Account) Deposit(v int) {
a.rwLock.Lock()
defer a.rwLock.Unlock()
a.balance += v

}

func NewAccount(init int) Account {
return Account{balance: init}

}

func (a *Account) CheckBalance() int {
a.rwLock.RLock()
defer a.rwLock.RUnlock()
return a.balance

}

func (a *Account) Withdraw(v int) {
a.rwLock.Lock()
defer a.rwLock.Unlock()
a.balance -= v

}

Two Solutions to the Same Problem

Locks:

Multiple threads can reference same

memory location

Use lock to ensure only one thread is

updating it at any given time

Channels:

Data item initially stored in channel

Threads must request item from

channel, make updates, and return

item to channel

19

T1 T2 T3

0x1000: 100

T1 T2 T3

100

C

100

110

Bank Account Code (using channels)

20

package account

type Account struct {
// Fill in Here

}

func NewAccount(init int) Account {
// Fill in Here

}

func (a *Account) CheckBalance() int {
// What goes Here?

}

func (a *Account) Withdraw(v int) {
// ???

}

func (a *Account) Deposit(v int) {
// ???

}

Bank Account Code (using channels)

21

package account

type Account struct {
balance chan int

}

func NewAccount(init int) Account {
a := Account{

balance: make(chan int, 1)
}
a.balance <- init
return a

}

func (a *Account) CheckBalance() int {
// What goes Here?

}

func (a *Account) Withdraw(v int) {
// ???

}

func (a *Account) Deposit(v int) {
// ???

}

Bank Account Code (using channels)

22

func (a *Account) CheckBalance() int {
bal := <-a.balance
a.balance <- bal
return bal

}

func (a *Account) Withdraw(v int) {
// ???

}

func (a *Account) Deposit(v int) {
//???

}

package account

type Account struct {
balance chan int

}

func NewAccount(init int) Account {
a := Account{

balance: make(chan int, 1)
}
a.balance <- init
return a

}

Bank Account Code (using channels)

23

func (a *Account) CheckBalance() int {
bal := <-a.balance
a.balance <- bal
return bal

}

func (a *Account) Withdraw(v int) {
bal := <-a.balance
a.balance <- (bal - v)

}

func (a *Account) Deposit(v int) {
//???

}

package account

type Account struct {
balance chan int

}

func NewAccount(init int) Account {
a := Account{

balance: make(chan int, 1)
}
a.balance <- init
return a

}

Bank Account Code (using channels)

24

func (a *Account) CheckBalance() int {
bal := <-a.balance
a.balance <- bal
return bal

}

func (a *Account) Withdraw(v int) {
bal := <-a.balance
a.balance <- (bal - v)

}

func (a *Account) Deposit(v int) {
bal := <-a.balance
a.balance <- (bal + v)

}

package account

type Account struct {
balance chan int

}

func NewAccount(init int) Account {
a := Account{

balance: make(chan int, 1)
}
a.balance <- init
return a

}

Select statement

27

select allows a goroutine to wait on multiple channels at once

for {
select {

case money := <-dad:
buySnacks(money)

case money := <-mom:
buySnacks(money)

}

}

Select statement

28

select allows a goroutine to wait on multiple channels at once

for {
select {

case money := <-dad:
buySnacks(money)

case money := <-mom:
buySnacks(money)

case default:
starve()
time.Sleep(5 * time.Second)

}

}

Handle timeouts using select

29

// Asynchronously request an answer
// from server, timing out after X
// seconds
result := make(chan int)
timeout := make(chan bool)

// Ask server
go func() {

response := // ... send RPC
result <- response

}()

// Start timer
go func() {

time.Sleep(5 * time.Second)
timeout <- true

}()

// Wait on both channels
select {

case res := <-result:
handleResult(res)

case <-timeout:
fmt.Println("Timeout!")

}

Exercise: Implementing a mutex using channels

30

type Lock struct {
// ???

}

func NewLock() Lock {
// ???

}

func (l *Lock) Lock() {
// ???

}

func (l *Lock) Unlock() {
// ???

}

Exercise: Implementing a mutex using channels

31

type Lock struct {
ch chan bool

}

func NewLock() Lock {
// ???

}

func (l *Lock) Lock() {
// ???

}

func (l *Lock) Unlock() {
// ???

}

Exercise: Implementing a mutex using channels

32

type Lock struct {
ch chan bool

}

func NewLock() Lock {
lock := Lock{make(chan bool, 1)}
lock.ch <- true
return lock

}

func (l *Lock) Lock() {
// ???

}

func (l *Lock) Unlock() {
// ???

}

Exercise: Implementing a mutex using channels

33

type Lock struct {
ch chan bool

}

func NewLock() Lock {
lock := Lock{make(chan bool, 1)}
lock.ch <- true
return lock

}

func (l *Lock) Lock() {
<-lock.ch

}

func (l *Lock) Unlock() {
// ???

}

Exercise: Implementing a mutex using channels

34

type Lock struct {
ch chan bool

}

func NewLock() Lock {
lock := Lock{make(chan bool, 1)}
lock.ch <- true
return lock

}

func (l *Lock) Lock() {
<-lock.ch

}

func (l *Lock) Unlock() {
lock.ch <- true

}

Outline

Two synchronization mechanisms

Locks

Channels

MapReduce

36

Application: Word count

How much wood would a woodchuck chuck

if a wooadchuck could chuck wood?

37

how: 1, much: 1, wood: 2, would: 1, a: 2, woodchuck: 2,

chuck: 2, if: 1, could: 1

Application: Word count

Locally: tokenize and put words in a hash map

38

How do you parallelize this?

Partition the document into n partitions.

Build n hash maps, one for each partition

Merge the n hash maps (by key)

How do you do this in a distributed environment?

39

When in the Course of human events, it

becomes necessary for one people to

dissolve the political bands which have

connected them with another, and to assume,

among the Powers of the earth, the separate

and equal station to which the Laws of

Nature and of Nature's God entitle them, a

decent respect to the opinions of mankind

requires that they should declare the

causes which impel them to the separation.

40

Input document

When in the Course of human events, it

becomes necessary for one people to

dissolve the political bands which have

connected them with another, and to assume,

among the Powers of the earth, the separate

and equal station to which the Laws of

Nature and of Nature's God entitle them, a

decent respect to the opinions of mankind

requires that they should declare the

causes which impel them to the separation.

41

Partition

When in the Course of human events, it

becomes necessary for one people to

dissolve the political bands which have

connected them with another, and to assume,

among the Powers of the earth, the separate

and equal station to which the Laws of

Nature and of Nature's God entitle them, a

decent respect to the opinions of mankind

requires that they should declare the

causes which impel them to the separation.

42

Partition

When in the Course

of human events, it

becomes necessary

for one people to

dissolve the political

bands which have

connected them with

another, and to assume,

among the Powers of the

earth, the separate and

equal station to which

the Laws of

Nature and of Nature's

God entitle them, a

decent respect to the

opinions of mankind

requires that they

should declare the

causes which impel them

to the separation.

43

when: 1, in: 1,

the: 1, course: 1,

of: 1, human: 1,

events: 1, it: 1

dissolve: 1, the: 2,

political: 1, bands: 1,

which: 1, have: 1,

connected: 1, them: 1 ...

among: 1, the: 2,

powers: 1, of: 2,

earth: 1, separate: 1,

equal: 1, and: 1 ...

nature: 2, and: 1, of: 2,

god: 1, entitle: 1, them: 1,

decent: 1, respect: 1,

mankind: 1, opinion: 1 ...

requires: 1, that: 1,

they: 1, should: 1,

declare: 1, the: 1,

causes: 1, which: 1 ...

Compute word counts locally

44

when: 1, in: 1,

the: 1, course: 1,

of: 1, human: 1,

events: 1, it: 1

dissolve: 1, the: 2,

political: 1, bands: 1,

which: 1, have: 1,

connected: 1, them: 1 ...

among: 1, the: 2,

powers: 1, of: 2,

earth: 1, separate: 1,

equal: 1, and: 1 ...

nature: 2, and: 1, of: 2,

god: 1, entitle: 1, them: 1,

decent: 1, respect: 1,

mankind: 1, opinion: 1 ...

requires: 1, that: 1,

they: 1, should: 1,

declare: 1, the: 1,

causes: 1, which: 1 ...

Compute word counts locally

45

Now what…

How to merge results?

Merging results computed locally

Don’t merge

46

Partition key space among nodes in cluster (e.g. [a-e], [f-j], [k-p] ...)

1. Assign a key space to each node

2. Split local results by the key spaces

3. Fetch and merge results that correspond to the node’s key space

Send everything to one node

Several options

— requires additional computation for correct results

— what if data is too big? Too slow…

when: 1, in: 1,

the: 1, course: 1,

of: 1, human: 1,

events: 1, it: 1

dissolve: 1, the: 2,

political: 1, bands: 1,

which: 1, have: 1,

connected: 1, them: 1 ...

among: 1, the: 2,

powers: 1, of: 2,

earth: 1, separate: 1,

equal: 1, and: 1 ...

nature: 2, and: 1, of: 2,

god: 1, entitle: 1, them: 1,

decent: 1, respect: 1,

mankind: 1, opinion: 1 ...

requires: 1, that: 1,

they: 1, should: 1,

declare: 1, the: 1,

causes: 1, which: 1 ...

47

when: 1, the: 1,

in: 1, it: 1, human: 1,

course: 1, events: 1,

of: 1

bands: 1, dissolve: 1,

connected: 1, have: 1,

political: 1, the: 1,

them: 1, which: 1

among: 1, and: 1,

equal: 1, earth: 1,

separate: 1, the: 2,

powers: 1, of: 2

nature: 2, of: 2,

mankind: 1, opinion: 1,

entitle: 1, and: 1,

decent: 1, god: 1,

them: 1, respect: 1,

causes: 1, declare: 1,

requires: 1, should: 1,

that: 1, they: 1, the: 1,

which: 1

Split local results by key space

48

[a-e]

[f-j]

[k-p]

[q-s]

[t-z]

All-to-all shuffle

49

[a-e]

[f-j]

[k-p]

[q-s]

[t-z]

when: 1, the: 1, that: 1,

they: 1, the: 1, which: 1,

them: 1, the: 2, the: 1,

them: 1, which: 1

bands: 1, dissolve: 1,

connected: 1, course: 1,

events: 1, among: 1, and: 1,

equal: 1, earth: 1, entitle: 1,

and: 1, decent: 1, causes: 1,

declare: 1

powers: 1, of: 2,

nature: 2, of: 2,

mankind: 1, of: 1,

opinion: 1, political: 1

god: 1, have: 1,

in: 1, it: 1,

human: 1,

requires: 1, should: 1,

respect: 1, separate: 1

Note the duplicates...

50

[a-e]

[f-j]

[k-p]

[q-s]

[t-z]

when: 1, the: 4,

that: 1, they: 1,

which: 2, them: 2

bands: 1, dissolve: 1,

connected: 1, course: 1,

events: 1, among: 1, and: 2,

equal: 1, earth: 1,

entitle: 1, decent: 1,

causes: 1, declare: 1

powers: 1, of: 5,

nature: 2, mankind: 1,

opinion: 1, political: 1

god: 1, have: 1,

in: 1, it: 1,

human: 1,

requires: 1, should: 1,

respect: 1, separate: 1

Merge results received from other nodes

51

Mapreduce

Partition dataset into many chunks

Map stage: Each node processes one or more chunks locally

Reduce stage: Each node fetches and merges partial results from all other nodes

52

Visualizing MapReduce

Note the 3 stages:

- Map

- Reduce

- Shuffle

53
** Source: http://www.systems-deployment.com/animation.html

http://www.systems-deployment.com/animation.html
http://www.systems-deployment.com/animation.html
http://www.systems-deployment.com/animation.html

Mapreduce Interface

map(key, value) -> list(<k’, v’>)

Apply function to (key, value) pair

Outputs list of intermediate pairs

54

Mapreduce: Word count

map(key, value):

// key = document name

// value = document contents

for each word w in value:

emit (w, 1)

55

Mapreduce Interface

map(key, value) -> list(<k’, v’>)

Apply function to (key, value) pair

Outputs list of intermediate pairs

reduce(key, list<value>) -> <k’, v’>

Applies aggregation function to values

Outputs result

56

Mapreduce: Word count

map(key, value):

// key = document name

// value = document contents

for each word w in value:

emit (w, 1)

reduce(key, values):

// key = the word

// values = number of occurrences of that word

count = sum(values)

emit (key, count)

57

Mapreduce: Word count

58

map combine shuffle reduce

Why is implementing MapReduce hard?

● Failure is common
○ Even if each machine is available p = 99.999% of the time, a datacenter with

n = 100,000 machines still encounters failures (1-pn) = 63% of the time

● Data skew causes unbalanced performance across cluster

➔ Problems occur at scale.

➔ Hard to debug!

59

2004

MapReduce

2007 2011 2012 2015

Dryad

60

	Slide 1: Concurrency in Go
	Slide 2: Go Resources
	Slide 3: Today’s Precept…
	Slide 4: Two synchronization mechanisms
	Slide 5: Example: Bank account
	Slide 6: Example: Bank account
	Slide 7: What went wrong?
	Slide 8: What went wrong?
	Slide 9: What went wrong?
	Slide 10: What went wrong?
	Slide 11: What went wrong?
	Slide 12: What went wrong?
	Slide 13: Solution - Locks
	Slide 14: Good Video Explanations
	Slide 15: Locks in Go
	Slide 16: Locks in Go
	Slide 17: Read Write Locks in Go
	Slide 18: Read Write Locks in Go
	Slide 19: Two Solutions to the Same Problem
	Slide 20: Bank Account Code (using channels)
	Slide 21: Bank Account Code (using channels)
	Slide 22: Bank Account Code (using channels)
	Slide 23: Bank Account Code (using channels)
	Slide 24: Bank Account Code (using channels)
	Slide 27: Select statement
	Slide 28: Select statement
	Slide 29: Handle timeouts using select
	Slide 30: Exercise: Implementing a mutex using channels
	Slide 31: Exercise: Implementing a mutex using channels
	Slide 32: Exercise: Implementing a mutex using channels
	Slide 33: Exercise: Implementing a mutex using channels
	Slide 34: Exercise: Implementing a mutex using channels
	Slide 36: Outline
	Slide 37: Application: Word count
	Slide 38: Application: Word count
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Merging results computed locally
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Mapreduce
	Slide 53: Visualizing MapReduce
	Slide 54: Mapreduce Interface
	Slide 55: Mapreduce: Word count
	Slide 56: Mapreduce Interface
	Slide 57: Mapreduce: Word count
	Slide 58: Mapreduce: Word count
	Slide 59: Why is implementing MapReduce hard?
	Slide 60

