
Databases

COS 418/518: Distributed Systems
Lecture 19

Jialin Ding, Mike Freedman

1

Rest of the semester

• Lectures
• Databases
• Blockchains
• AI systems
• Reasoning about performance

• Assignments
• Assignment 4 due Tuesday, November 25
• Assignment 5 due Friday, December 12 (no late days)

• Final: Wednesday, December 17
• Only covers material from the second half of the semester
• More logistical details to come (will post to Ed)

2

Today

• Background on databases
• More on isolation
• MVCC and snapshot isolation

• More on sharding
• Data distribution strategies

3

Key-value stores vs. relational databases

• Key-value stores
• Get(K)
• Put(K, V)
• Delete(K)

Key Value

as1234 {“name”: “Alice Smith”, “major”:
“COS”}

bw5678 {“name”: “Bob Williams”, “major”:
“ECE”}

4

Key-value stores vs. relational databases

• Key-value stores
• Get(K)
• Put(K, V)
• Delete(K)

• Relational databases
• Tables (i.e., “relations”) store

records
• Can select/filter records by

different columns
• Tables can be joined
• Fixed schema

Key Value

as1234 {“name”: “Alice Smith”, “major”:
“COS”}

bw5678 {“name”: “Bob Williams”, “major”:
“ECE”}

netid first_name last_name major

as1234 Alice Smith COS

bw5678 Bob Williams ECE

major enrollment

COS 400

ECE 300
5

Today

• Background on databases
• More on isolation
• MVCC and snapshot isolation

• More on sharding
• Data distribution strategies

6

MVCC: Multi-version concurrency control

• Store multiple versions of each record

netid first_name last_name major version

as1234 Alice Smith COS 0

bw5678 Bob Williams ECE 0

7

MVCC: Multi-version concurrency control

• Store multiple versions of each record

netid first_name last_name major version

as1234 Alice Smith COS 0

as1234 Alice Smith ECO 1

bw5678 Bob Williams ECE 0

8

MVCC: Multi-version concurrency control

• Store multiple versions of each record
• Allows “time travel”
• Enables snapshot isolation

netid first_name last_name major start_ts end_ts

as1234 Alice Smith COS Sep 2024 Oct 2025

as1234 Alice Smith ECO Oct 2025 present

bw5678 Bob Williams ECE Sep 2025 present

9

MVCC: Multi-version concurrency control

• Store multiple versions of each record
• Allows “time travel”
• Enables snapshot isolation

netid first_name last_name major start_xid end_xid

as1234 Alice Smith COS 100 200

as1234 Alice Smith ECO 200 inf

bw5678 Bob Williams ECE 150 inf

10

Snapshot Isolation

• A transaction reads from a snapshot taken at start time
• No locks for reads!
• Conflicts may arise due to writes
• If two transactions write the same record, the first transaction commits

and the second transaction aborts (write-write conflict)
• Does not check for read-write conflicts

11

T1: R(A)->10 R(A)->20
T2: W(A=20)

Snapshot Isolation

• A transaction reads from a snapshot taken at start time
• No locks for reads!
• Conflicts may arise due to writes
• If two transactions write the same record, the first transaction commits

and the second transaction aborts (write-write conflict)
• Does not check for read-write conflicts

12

Transfer: R(A) W(A) R(B) W(B)
Sum: R(A) R(B)

A = 100
B = 100

A = 90
B = 100

A = 90
B = 110

Snapshot Isolation in Postgres

• Each transaction is committed with a monotonically increasing
transaction ID (xid)
• New records created by transaction will have xmin = xid
• Records deleted by transaction will have xmax = xid

13

Snapshot Isolation in Postgres

key value xmin xmax

A 10 0 inf

14

T1 (xid=1)

W(A, 20)

Snapshot Isolation in Postgres

15

T1 (xid=1)

W(A, 20)

key value xmin xmax

A 10 0 1

A 20 1 inf

Snapshot Isolation in Postgres

• Each transaction is committed with a monotonically increasing
transaction ID (xid)
• New records created by transaction will have xmin = xid
• Records deleted by transaction will have xmax = xid

• Snapshot is defined by three variables
• xmin: oldest in-progress transaction ID at the time the snapshot was

taken
• xmax: next available transaction ID (not taken by committed or in-

progress transactions)
• xip: list of concurrent in-progress transaction IDs

16

Snapshot Isolation in Postgres

key value xmin xmax

A 10 0 inf

17

T1

xmin = 1
xmax = 1
xip = {}

nextXID = 1

Snapshot Isolation in Postgres
• Each transaction is committed with a monotonically increasing transaction

ID (xid)
• New records created by transaction will have xmin = xid
• Records deleted by transaction will have xmax = xid

• Snapshot is defined by three variables
• xmin: oldest in-progress transaction ID at the time the snapshot was taken
• xmax: next available transaction ID (not taken by committed or in-progress transactions)
• xip: list of concurrent in-progress transaction IDs

• Visibility check for a given record
• Record must be created

• xmin < snapshot xmin, OR
• Snapshot xmin <= xmin < snapshot xmax AND xmin not in xip

• Record must not be deleted
• xmax >= snapshot xmax OR xmax in xip

18

Snapshot Isolation in Postgres

key value xmin xmax

A 10 0 inf

19

T1

xmin = 1
xmax = 1
xip = {}

R(A) -> ?

nextXID = 1

Record must be created
• xmin < snapshot xmin, OR
• Snapshot xmin <= xmin < snapshot xmax AND

xmin not in xip

Record must not be deleted
• xmax >= snapshot xmax OR xmax in xip

Snapshot Isolation in Postgres

key value xmin xmax

A 10 0 inf

20

T1

xmin = 1
xmax = 1
xip = {}

R(A) -> 10

nextXID = 1

Record must be created
• xmin < snapshot xmin, OR
• Snapshot xmin <= xmin < snapshot xmax AND

xmin not in xip

Record must not be deleted
• xmax >= snapshot xmax OR xmax in xip

Snapshot Isolation in Postgres

key value xmin xmax

A 10 0 inf

21

T1 (xid=1)

xmin = 1
xmax = 1
xip = {}

R(A) -> 10
W(A, 20)

nextXID = 2

Record must be created
• xmin < snapshot xmin, OR
• Snapshot xmin <= xmin < snapshot xmax AND

xmin not in xip

Record must not be deleted
• xmax >= snapshot xmax OR xmax in xip

Snapshot Isolation in Postgres

key value xmin xmax

A 10 0 1

A 20 1 inf

22

T1 (xid=1)

xmin = 1
xmax = 1
xip = {}

R(A) -> 10
W(A, 20)

nextXID = 2

Record must be created
• xmin < snapshot xmin, OR
• Snapshot xmin <= xmin < snapshot xmax AND

xmin not in xip

Record must not be deleted
• xmax >= snapshot xmax OR xmax in xip

Snapshot Isolation in Postgres

key value xmin xmax

A 10 0 1

A 20 1 inf

23

T1 (xid=1)

xmin = 1
xmax = 1
xip = {}

R(A) -> 10
W(A, 20)

T2

xmin = 1
xmax = 2
xip = {1}

R(A) -> ?

nextXID = 2

Record must be created
• xmin < snapshot xmin, OR
• Snapshot xmin <= xmin < snapshot xmax AND

xmin not in xip

Record must not be deleted
• xmax >= snapshot xmax OR xmax in xip

Snapshot Isolation in Postgres

key value xmin xmax

A 10 0 1

A 20 1 inf

24

T1 (xid=1)

xmin = 1
xmax = 1
xip = {}

R(A) -> 10
W(A, 20)

T2

xmin = 1
xmax = 2
xip = {1}

R(A) -> 10

nextXID = 2

Record must be created
• xmin < snapshot xmin, OR
• Snapshot xmin <= xmin < snapshot xmax AND

xmin not in xip

Record must not be deleted
• xmax >= snapshot xmax OR xmax in xip

Snapshot Isolation in Postgres

key value xmin xmax

A 10 0 1

A 20 1 inf

B 30 2 inf

25

T1 (xid=1)

xmin = 1
xmax = 1
xip = {}

R(A) -> 10
W(A, 20)

T2 (xid=2)

xmin = 1
xmax = 2
xip = {1}

R(A) -> 10
W(B, 30)
commit

nextXID = 3

Record must be created
• xmin < snapshot xmin, OR
• Snapshot xmin <= xmin < snapshot xmax AND

xmin not in xip

Record must not be deleted
• xmax >= snapshot xmax OR xmax in xip

Snapshot Isolation in Postgres

key value xmin xmax

A 10 0 1

A 20 1 inf

B 30 2 inf

26

T1 (xid=1)

xmin = 1
xmax = 1
xip = {}

R(A) -> 10
W(A, 20)

T3

xmin = 1
xmax = 3
xip = {1}

D(B)

nextXID = 3

Record must be created
• xmin < snapshot xmin, OR
• Snapshot xmin <= xmin < snapshot xmax AND

xmin not in xip

Record must not be deleted
• xmax >= snapshot xmax OR xmax in xip

Snapshot Isolation in Postgres

key value xmin xmax

A 10 0 1

A 20 1 inf

B 30 2 3

27

T1 (xid=1)

xmin = 1
xmax = 1
xip = {}

R(A) -> 10
W(A, 20)

T3 (xid=3)

xmin = 1
xmax = 3
xip = {1}

D(B)

nextXID = 4

Record must be created
• xmin < snapshot xmin, OR
• Snapshot xmin <= xmin < snapshot xmax AND

xmin not in xip

Record must not be deleted
• xmax >= snapshot xmax OR xmax in xip

Snapshot Isolation in Postgres

key value xmin xmax

A 10 0 1

A 20 1 inf

B 30 2 3

28

T1 (xid=1)

xmin = 1
xmax = 1
xip = {}

R(A) -> 10
W(A, 20)

T3 (xid=3)

xmin = 1
xmax = 3
xip = {1}

D(B)
R(A) -> 10

nextXID = 4

Record must be created
• xmin < snapshot xmin, OR
• Snapshot xmin <= xmin < snapshot xmax AND

xmin not in xip

Record must not be deleted
• xmax >= snapshot xmax OR xmax in xip

Snapshot Isolation in Postgres

key value xmin xmax

A 10 0 1

A 20 1 inf

B 30 2 3

29

T1 (xid=1)

xmin = 1
xmax = 1
xip = {}

R(A) -> 10
W(A, 20)

T3 (xid=3)

xmin = 1
xmax = 3
xip = {1}

D(B)
R(A) -> 10
W(A, 40)

nextXID = 4

Record must be created
• xmin < snapshot xmin, OR
• Snapshot xmin <= xmin < snapshot xmax AND

xmin not in xip

Record must not be deleted
• xmax >= snapshot xmax OR xmax in xip

Snapshot Isolation vs. Serializability

• Serializability is a stronger isolation level
• Snapshot isolation allows schedules that are not serializable (next slide)

• Snapshot isolation is more scalable
• Reads and writes do not block each other, unlike 2PL

30

Write skew

• Occurs when transactions read overlapping sets of data but
write disjoint sets
• Snapshot isolation only checks for write-write conflicts on the same

record

31

key value

A 1

B 0

T1 (turn all 1s to 0s)

R(A)
R(B)
W(A, 0)

T2 (turn all 0s to 1s)

R(A)
R(B)
W(B, 1)

Write skew

• Occurs when transactions read overlapping sets of data but
write disjoint sets
• Snapshot isolation only checks for write-write conflicts on the same

record

32

key value

A 1

B 0

T1 (turn all 1s to 0s)

R(A)
R(B)
W(A, 0)

T2 (turn all 0s to 1s)

R(A)
R(B)
W(B, 1)

key value

A 0

B 1

Not serializable!

Isolation vs. consistency

• Isolation is about whether concurrent transactions interfere with
each other
• Isolation models: serializable, snapshot isolation

• Consistency is about whether nodes see the same state
• Consistency models: linearizable, causal+, eventual

33

Today

• Background on databases
• More on isolation
• MVCC and snapshot isolation

• More on sharding
• Data distribution strategies

34

Data distribution strategies

• Words that mean similar things
• Sharding
• Partitioning

• Careful: could refer to data partitioning or network partitioning
• Distribution

• Careful: data can be distributed without being sharded

35

Data distribution strategies

• Example: distribute data across three nodes

36

Node 1 Node 2 Node 3

Range Netid in [aa0000, hz9999] Netid in [ia0000, sz0000] Netid in [ta0000, zz9999]

Round robin

Hash

All/broadcast

Data distribution strategies

• Example: distribute data across three nodes

37

Node 1 Node 2 Node 3

Range Netid in [aa0000, hz9999] Netid in [ia0000, sz0000] Netid in [ta0000, zz9999]

Round robin Row 1, row 4, row 7, … Row 2, row 5, row 8, … Row 3, row 6, row 9, …

Hash

All/broadcast

Data distribution strategies

• Example: distribute data across three nodes

38

Node 1 Node 2 Node 3

Range Netid in [aa0000, hz9999] Netid in [ia0000, sz0000] Netid in [ta0000, zz9999]

Round robin Row 1, row 4, row 7, … Row 2, row 5, row 8, … Row 3, row 6, row 9, …

Hash Hash(netid) mod 3 = 0 Hash(netid) mod 3 = 1 Hash(netid) mod 3 = 2

All/broadcast

Data distribution strategies

• Example: distribute data across three nodes

39

Node 1 Node 2 Node 3

Range Netid in [aa0000, hz9999] Netid in [ia0000, sz0000] Netid in [ta0000, zz9999]

Round robin Row 1, row 4, row 7, … Row 2, row 5, row 8, … Row 3, row 6, row 9, …

Hash Hash(netid) mod 3 = 0 Hash(netid) mod 3 = 1 Hash(netid) mod 3 = 2

All/broadcast All All All

Data distribution strategies

Range Round Robin Hash All/broadcast

Need to select a
column?

Yes No Yes No

Load balancing Hard Easy Easy N/A

40

Data distribution strategies

Range Round Robin Hash All/broadcast

Need to select a
column?

Yes No Yes No

Load balancing Hard Easy Easy N/A

Impact on joins Can be useful but
makes load
balancing worse

Useless Good for large
tables

Good for small
tables

41

Distribution strategies and joins

42

netid first_name last_name major

as1234 Alice Smith COS

bw5678 Bob Williams ECE

major enrollment

ECE 300

COS 400

Node 1

netid first_name last_name major

as1234 Alice Smith COS

major enrollment

ECE 300

Node 2

netid first_name last_name major

bw5678 Bob Williams ECE

major enrollment

COS 400
Joined records are not co-located on the same node
-> network communication overhead

Round robin distribution

Distribution strategies and joins

43

netid first_name last_name major

as1234 Alice Smith COS

bw5678 Bob Williams ECE

major enrollment

ECE 300

COS 400

Node 1

netid first_name last_name major

as1234 Alice Smith COS

major enrollment

COS 400

Node 2

netid first_name last_name major

bw5678 Bob Williams ECE

major enrollment

ECE 300
Joined records are co-located on the same node
-> No network communication overhead

Hash distribution (on “major” column for both tables)

Distribution strategies and joins

44

netid first_name last_name major grad_yr

as1234 Alice Smith COS 2027

bw5678 Bob Williams ECE 2026

major enrollment

ECE 300

COS 400

Node 1

major enrollment

COS 400

Node 2

grad_yr enrollment

2026 1500

2027 1600

netid first_name last_name major grad_yr

as1234 Alice Smith COS 2027

major enrollment

ECE 300

netid first_name last_name major grad_yr

bw5678 Bob Williams ECE 2026

Distribution strategies and joins

45

netid first_name last_name major grad_yr

as1234 Alice Smith COS 2027

bw5678 Bob Williams ECE 2026

major enrollment

ECE 300

COS 400

Node 1

major enrollment

COS 400

Node 2

All/broadcast distribution for small tables

Data is duplicated but network communication
is minimized

grad_yr enrollment

2026 1500

2027 1600

netid first_name last_name major grad_yr

as1234 Alice Smith COS 2027

grad_yr enrollment

2026 1500

2027 1600

major enrollment

ECE 300

netid first_name last_name major grad_yr

bw5678 Bob Williams ECE 2026

grad_yr enrollment

2026 1500

2027 1600

Today

• Background on databases
• More on isolation
• MVCC and snapshot isolation

• More on sharding
• Data distribution strategies

46

