Databases

COS 418/518: Distributed Systems

Lecture 19

Jialin Ding, Mike Freedman

Rest of the semester

* Lectures
 Databases
* Blockchains
* Al systems
* Reasoning about performance

* Assighments
* Assignment 4 due Tuesday, November 25
* Assignment 5 due Friday, December 12 (no late days)

* Final: Wednesday, December 17
* Only covers material from the second half of the semester
* More logistical details to come (will post to Ed)

Today

* Background on databases

* More on isolation
* MVCC and snapshot isolation

* More on sharding
* Data distribution strategies

Key-value stores vs. relational databases

* Key-value stores
e Get(K)
e Put(K, V)
* Delete(K)

as1234 {*name”: “Alice Smith”, “major”:
“COS”}

bw5678 {*name”: “Bob Williams”, “major”:
(13 ECE”}

Key-value stores vs. relational databases

* Key-value stores
e Get(K)
e Put(K, V)
* Delete(K)

 Relational databases

* Tables (i.e., “relations”) store
records

* Can select/filter records by
different columns

* Tables can be joined
* Fixed schema

as1234 {*name”: “Alice Smith”, “major”:
“COS”}

bw5678 {*name”: “Bob Williams”, “major”:
(13 ECE”}

as1234 Alice Smith
bw5678 Bob Williams ECE

major | enrolment _
COS 400

ECE 300

Today

* Background on databases

* More on isolation
* MVCC and snapshot isolation

* More on sharding
* Data distribution strategies

MVCC: Multi-version concurrency control

* Store multiple versions of each record

as1234 Alice Smith

bwb5678 Bob Williams ECE 0

MVCC: Multi-version concurrency control

* Store multiple versions of each record

as1234 Alice Smith

as1234 Alice Smith ECO 1

bwb5678 Bob Williams ECE 0

MVCC: Multi-version concurrency control

* Store multiple versions of each record
* Allows “time travel”
* Enables snapshotisolation

as1234 Alice Smith Sep 2024 Oct 2025
as1234 Alice Smith ECO Oct 2025 present

bw5678 Bob Williams ECE Sep 2025 present

MVCC: Multi-version concurrency control

* Store multiple versions of each record
* Allows “time travel”
* Enables snapshotisolation

as1234 Alice Smith

as1234 Alice Smith ECO 200 inf

bw5678 Bob Williams ECE 150 inf

10

Snapshot Isolation

* Atransaction reads from a snapshot taken at start time
* No locks for reads!

* Conflicts may arise due to writes

* |f two transactions write the same record, the first transaction commits
and the second transaction aborts (write-write conflict)

e Does not check for read-write conflicts

T1: R(A)->10 R(A)->20
T2: W(A=20)

11

Snapshot Isolation

* Atransaction reads from a snapshot taken at start time
* No locks for reads!

* Conflicts may arise due to writes

* |f two transactions write the same record, the first transaction commits
and the second transaction aborts (write-write conflict)

e Does not check for read-write conflicts

A=100 A=90 A=90
B =100 B =100 B=110
Transfer: R(A) W(A) R(B) W(B)

Sum: R(A) R(B)

12

Snapshot Isolation in Postgres

* Each transaction is committed with a monotonically increasing
transaction ID (xid)
* New records created by transaction will have xmin = xid
* Records deleted by transaction will have xmax = xid

13

Snapshot Isolation in Postgres

A 10 0 inf

W(A, 20)

14

Snapshot Isolation in Postgres

A 10 0 1

W(A, 20)

A 20 1 inf

15

Snapshot Isolation in Postgres

* Each transaction is committed with a monotonically increasing
transaction ID (xid)
* New records created by transaction will have xmin = xid
* Records deleted by transaction will have xmax = xid

* Snapshot is defined by three variables

* xmin: oldest in-progress transaction ID at the time the snapshot was
taken

* xmax: next available transaction ID (not taken by committed or in-
progress transactions)

* xip: list of concurrent in-progress transaction IDs

16

Snapshot Isolation in Postgres

DT
A 10 0 inf xmin =1

xmax =1
Xip = {}

nextXID =1

17

Snapshot Isolation in Postgres

* Each transaction is committed with a monotonically increasing transaction
ID (xid)
* New records created by transaction will have xmin = xid
* Records deleted by transaction will have xmax = xid

 Snapshot is defined by three variables
* xmin: oldest in-progress transaction ID at the time the snapshot was taken
* xmax: next available transaction ID (not taken by committed or in-progress transactions)
* Xip: list of concurrent in-progress transaction IDs

* Visibility check for a given record

* Record must be created
* xmin < snapshot xmin, OR
* Snapshot xmin <= xmin < snapshot xmax AND xmin not in xip

* Record must not be deleted
* xmax >= snapshot xmax OR xmax in xip

18

Snapshot Isolation in Postgres

R
A 10 0 inf

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip

nextXID =1

19

Snapshot Isolation in Postgres

O
A 10 0 inf

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip

T1

xmin =1
xmax =1
Xip = {}

R(A)->10

nextXID =1

20

Snapshot Isolation in Postgres

O
A 10 0 inf

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip

T1 (xid=1)

xmin =1
xmax =1
Xip = {}

R(A)->10
W(A, 20)

nextXiD =2

21

Snapshot Isolation in Postgres

O
A 10 0 1

A

20 1 inf

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip

T1 (xid=1)

xmin =1
xmax =1
Xip = {}

R(A)->10
W(A, 20)

nextXiD =2

22

Snapshot Isolation in Postgres

nextXiD =2
A 10 0 1 Xxmin = Xxmin =1
Xxmax = xmax =2
A 20 1 inf xip = {} xip ={1}
R(A)->10
W(A, 20)
R(A) ->?

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip

Snapshot Isolation in Postgres

O
A 10 0 1

A

20 1 inf

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip

nextXiD =2

T2

xmin =1
xmax =2
xip = {1}

R(A)->10

24

Snapshot Isolation in Postgres

R O e
A 10 0 1

A

B

20 1 inf

30 2 inf

Record must be created

xmin < snapshot xmin, OR
Snapshot xmin <=xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted

xmax >= snapshot xmax OR xmax in xip

nextXiD =3

T2 (xid=2)

xmin =1
xmax =2
xip = {1}

R(A)->10
W(B, 30)
commit

25

Snapshot Isolation in Postgres

nextXiD =3
A 10 0 1 Xxmin = Xxmin =1
xmax = xmax =3
A 20 1 inf xip = {} xip ={1}
B 30 2 inf R(A) ->10
W(A, 20)
D(B)

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip

Snapshot Isolation in Postgres

O
A 10 0 1

A

B

20 1 inf

30 2 3

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip

nextXiD =4

T3 (xid=3)

xmin =1
xmax =3
xip = {1}

27

Snapshot Isolation in Postgres

A

B

R O e
A 10 0 1

20 1 inf

30 2 3

Record must be created

xmin < snapshot xmin, OR
Snapshot xmin <=xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted

xmax >= snapshot xmax OR xmax in xip

nextXiD =4

T3 (xid=3)
xmin =1

xmax =3
xip = {1}

R(A)->10

28

Snapshot Isolation in Postgres

A

B

R O e
A 10 0 1

20 1 inf

30 2 3

Record must be created

xmin < snapshot xmin, OR

Snapshot xmin <=xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted

xmax >= snapshot xmax OR xmax in xip

nextXiD =4

T3 (xid=3)

xmin =1
xmax =3
xip = {1}

29

Snapshot Isolation vs. Serializability

* Serializability is a stronger isolation level
* Snapshotisolation allows schedules that are not serializable (next slide)

* Snapshotisolation is more scalable
» Reads and writes do not block each other, unlike 2PL

30

Write skew

* Occurs when transactions read overlapping sets of data but
write disjoint sets

* Snapshotisolation only checks for write-write conflicts on the same
record

key T1 (turn all 1s to Os) T2 (turn all Os to 1s)
A 1 R(A) R(A)

R(B) R(B)
B 0 W(A,)

>
L
=
o
Y

31

Write skew

* Occurs when transactions read overlapping sets of data but
write disjoint sets

* Snapshotisolation only checks for write-write conflicts on the same
record

key T1 (turn all 1s to 0s) T2 (turn all Os to 1s) key

A 1 R(A) A 0
R(B)

B 0

S3D
>Z2
L
=
A
—

B 1

Not serializable!

32

Isolation vs. consistency

e |solation is about whether concurrent transactions interfere with
each other

* |solation models: serializable, snapshot isolation

 Consistency is about whether nodes see the same state
* Consistency models: linearizable, causal+, eventual

33

Today

* Background on databases

* More on isolation
* MVCC and snapshot isolation

* More on sharding
* Data distribution strategies

34

Data distribution strategies

* Words that mean similar things
* Sharding
* Partitioning
e Careful: could refer to data partitioning or network partitioning

* Distribution
* Careful: data can be distributed without being sharded

35

Data distribution strategies

* Example: distribute data across three nodes

Range Netid in [aa0000, hz9999] Netid in [ia0000, sz0000] Netid in [ta0000, zz9999]

Round robin
Hash

All/broadcast

36

Data distribution strategies

* Example: distribute data across three nodes

Range Netid in [aa0000, hz9999] Netid in [ia0000, sz0000] Netid in [ta0000, zz9999]
Round robin Row 1, row 4, row 7, ... Row 2, row 5, row 8, ... Row 3, row 6, row 9, ...
Hash

All/broadcast

37

Data distribution strategies

* Example: distribute data across three nodes

Range Netid in [aa0000, hz9999] Netid in [ia0000, sz0000] Netid in [ta0000, zz9999]
Round robin Row 1, row 4, row 7, ... Row 2, row 5, row 8, ... Row 3, row 6, row 9, ...
Hash Hash(netid) mod 3=0 Hash(netid) mod 3 =1 Hash(netid) mod 3 =2

All/broadcast

38

Data distribution strategies

* Example: distribute data across three nodes

Range

Round robin
Hash

All/broadcast

Netid in [aa0000, hz9999]

Row 1, row 4, row 7, ...
Hash(netid) mod 3=0

All

Netid in [ia0000, sz0000]

Row 2, row 5, row 8, ...
Hash(netid) mod 3 =1

All

Netid in [ta0000, zz9999]

Row 3, row 6, row 9, ...
Hash(netid) mod 3 =2

All

39

Data distribution strategies

Need to select a Yes
column?

Load balancing Hard Easy Easy N/A

40

Data distribution strategies

Need to select a Yes

column?

Load balancing Hard Easy Easy N/A

Impact on joins Can be useful but Useless Good for large Good for small
makes load tables tables

balancing worse

41

Distribution strategies and joins

as1234 Alice Smith

bwb5678 Bob Williams ECE
ECE 300

COS 400

Round robin distribution

Node 1
as1234 Alice Smith

mm
ECE 300

Joined records are not co-located on the same node
-> network communication overhead

Node 2
bw5678 Bob Williams

mm
COS 400

42

Distribution strategies and joins

Node 1
mmmm mmmm
as1234 Alice Smith

as1234 Alice Smith

bw5678 Bob Williams ECE mm
COS 400

major | enroliment_
ECE 300 Node 2
M mmmm

bwb678 Bob Willi
Hash distribution (on “major” column for both tables) W ° iHams

Joined records are co-located on the same node mm
ECE 300

-> No network communication overhead

43

Distribution strategies and joins

mmmm

as1234 Alice Smith 2027
bwb5678 Bob Williams ECE 2026
' major | enroliment [l grad_yr | enroltment
ECE 300 2026 1500

COS 400 2027 1600

Node 1
mmmm
as1234 Alice Smith 2027
COS 400
Node 2

mmmm

bwb5678 Bob Williams 2026

| major _| enroliment _
ECE 300

44

Distribution strategies and joins

Node 1
oo st nane st e Joior sy I X X T [T
as1234 Alice Smith 2027
as1234 Alice Smith 2027
bw5678 Bob Williams ECE 2026 | grad_yr | enrollment |
| major | enroltment |
COS 400
ECE 300 2026 1500
Node 2
COS 400 2027 1600

mmmm

bwb5678 Bob Williams 2026
All/broadcast distribution for small tables

o | enroumens LSRG oobnert

Data is duplicated but network communication — 2026 1500

is minimized 2027 1600

45

Today

* Background on databases

* More on isolation
* MVCC and snapshot isolation

* More on sharding
* Data distribution strategies

46

