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Rest of the semester

* Lectures
 Databases
* Blockchains
* Al systems
* Reasoning about performance

* Assighments
* Assignment 4 due Tuesday, November 25
* Assignment 5 due Friday, December 12 (no late days)

* Final: Wednesday, December 17
* Only covers material from the second half of the semester
* More logistical details to come (will post to Ed)



Today

* Background on databases

* More on isolation
* MVCC and snapshot isolation

* More on sharding
* Data distribution strategies



Key-value stores vs. relational databases

* Key-value stores
e Get(K)
e Put(K, V)
* Delete(K)

as1234 {*name”: “Alice Smith”, “major”:
“COS”}

bw5678 {*name”: “Bob Williams”, “major”:
(13 ECE”}



Key-value stores vs. relational databases

* Key-value stores
e Get(K)
e Put(K, V)
* Delete(K)

 Relational databases

* Tables (i.e., “relations”) store
records

* Can select/filter records by
different columns

* Tables can be joined
* Fixed schema

as1234 {*name”: “Alice Smith”, “major”:
“COS”}

bw5678 {*name”: “Bob Williams”, “major”:
(13 ECE”}

as1234 Alice Smith
bw5678 Bob Williams ECE

major | enrolment _
COS 400

ECE 300



Today

* Background on databases

* More on isolation
* MVCC and snapshot isolation

* More on sharding
* Data distribution strategies



MVCC: Multi-version concurrency control

* Store multiple versions of each record

as1234 Alice Smith

bwb5678 Bob Williams ECE 0



MVCC: Multi-version concurrency control

* Store multiple versions of each record

as1234 Alice Smith

as1234 Alice Smith ECO 1

bwb5678 Bob Williams ECE 0



MVCC: Multi-version concurrency control

* Store multiple versions of each record
* Allows “time travel”
* Enables snapshotisolation

as1234 Alice Smith Sep 2024 Oct 2025
as1234 Alice Smith ECO Oct 2025 present

bw5678 Bob Williams ECE Sep 2025 present



MVCC: Multi-version concurrency control

* Store multiple versions of each record
* Allows “time travel”
* Enables snapshotisolation

as1234 Alice Smith

as1234 Alice Smith ECO 200 inf

bw5678 Bob Williams ECE 150 inf
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Snapshot Isolation

* Atransaction reads from a snapshot taken at start time
* No locks for reads!

* Conflicts may arise due to writes

* |f two transactions write the same record, the first transaction commits
and the second transaction aborts (write-write conflict)

e Does not check for read-write conflicts

T1: R(A)->10 R(A)->20
T2: W(A=20)
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Snapshot Isolation

* Atransaction reads from a snapshot taken at start time
* No locks for reads!

* Conflicts may arise due to writes

* |f two transactions write the same record, the first transaction commits
and the second transaction aborts (write-write conflict)

e Does not check for read-write conflicts

A=100 A=90 A=90
B =100 B =100 B=110
Transfer: R(A) W(A) R(B) W(B)

Sum: R(A) R(B)
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Snapshot Isolation in Postgres

* Each transaction is committed with a monotonically increasing
transaction ID (xid)
* New records created by transaction will have xmin = xid
* Records deleted by transaction will have xmax = xid
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Snapshot Isolation in Postgres

A 10 0 inf

W(A, 20)
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Snapshot Isolation in Postgres

A 10 0 1

W(A, 20)

A 20 1 inf

15



Snapshot Isolation in Postgres

* Each transaction is committed with a monotonically increasing
transaction ID (xid)
* New records created by transaction will have xmin = xid
* Records deleted by transaction will have xmax = xid

* Snapshot is defined by three variables

* xmin: oldest in-progress transaction ID at the time the snapshot was
taken

* xmax: next available transaction ID (not taken by committed or in-
progress transactions)

* xip: list of concurrent in-progress transaction IDs
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Snapshot Isolation in Postgres

DT
A 10 0 inf xmin =1

xmax =1
Xip = {}

nextXID =1
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Snapshot Isolation in Postgres

* Each transaction is committed with a monotonically increasing transaction
ID (xid)
* New records created by transaction will have xmin = xid
* Records deleted by transaction will have xmax = xid

 Snapshot is defined by three variables
* xmin: oldest in-progress transaction ID at the time the snapshot was taken
* xmax: next available transaction ID (not taken by committed or in-progress transactions)
* Xip: list of concurrent in-progress transaction IDs

* Visibility check for a given record

* Record must be created
* xmin < snapshot xmin, OR
* Snapshot xmin <= xmin < snapshot xmax AND xmin not in xip

* Record must not be deleted
* xmax >= snapshot xmax OR xmax in xip
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Snapshot Isolation in Postgres

R
A 10 0 inf

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip

nextXID =1
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Snapshot Isolation in Postgres

O
A 10 0 inf

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip

T1

xmin =1
xmax =1
Xip = {}

R(A)->10

nextXID =1
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Snapshot Isolation in Postgres

O
A 10 0 inf

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip

T1 (xid=1)

xmin =1
xmax =1
Xip = {}

R(A)->10
W(A, 20)

nextXiD =2
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Snapshot Isolation in Postgres

O
A 10 0 1

A

20 1 inf

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip

T1 (xid=1)

xmin =1
xmax =1
Xip = {}

R(A)->10
W(A, 20)

nextXiD =2
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Snapshot Isolation in Postgres

nextXiD =2
A 10 0 1 Xxmin = Xxmin =1
Xxmax = xmax =2
A 20 1 inf xip = {} xip ={1}
R(A)->10
W(A, 20)
R(A) ->?

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip



Snapshot Isolation in Postgres

O
A 10 0 1

A

20 1 inf

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip

nextXiD =2

T2

xmin =1
xmax =2
xip = {1}

R(A)->10
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Snapshot Isolation in Postgres

R O e
A 10 0 1

A

B

20 1 inf

30 2 inf

Record must be created

xmin < snapshot xmin, OR
Snapshot xmin <=xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted

xmax >= snapshot xmax OR xmax in xip

nextXiD =3

T2 (xid=2)

xmin =1
xmax =2
xip = {1}

R(A)->10
W(B, 30)
commit
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Snapshot Isolation in Postgres

nextXiD =3
A 10 0 1 Xxmin = Xxmin =1
xmax = xmax =3
A 20 1 inf xip = {} xip ={1}
B 30 2 inf R(A) ->10
W(A, 20)
D(B)

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip



Snapshot Isolation in Postgres

O
A 10 0 1

A

B

20 1 inf

30 2 3

Record must be created

 xmin <snapshot xmin, OR

* Shapshot xmin <= xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted
* xmax >=snapshot xmax OR xmax in xip

nextXiD =4

T3 (xid=3)

xmin =1
xmax =3
xip = {1}

27



Snapshot Isolation in Postgres

A

B

R O e
A 10 0 1

20 1 inf

30 2 3

Record must be created

xmin < snapshot xmin, OR
Snapshot xmin <=xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted

xmax >= snapshot xmax OR xmax in xip

nextXiD =4

T3 (xid=3)
xmin =1

xmax =3
xip = {1}

R(A)->10
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Snapshot Isolation in Postgres

A

B

R O e
A 10 0 1

20 1 inf

30 2 3

Record must be created

xmin < snapshot xmin, OR

Snapshot xmin <=xmin < snapshot xmax AND
Xxmin not in xip

Record must not be deleted

xmax >= snapshot xmax OR xmax in xip

nextXiD =4

T3 (xid=3)

xmin =1
xmax =3
xip = {1}
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Snapshot Isolation vs. Serializability

* Serializability is a stronger isolation level
* Snapshotisolation allows schedules that are not serializable (next slide)

* Snapshotisolation is more scalable
» Reads and writes do not block each other, unlike 2PL
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Write skew

* Occurs when transactions read overlapping sets of data but
write disjoint sets

* Snapshotisolation only checks for write-write conflicts on the same
record

key T1 (turn all 1s to Os) T2 (turn all Os to 1s)
A 1 R(A) R(A)

R(B) R(B)
B 0 W(A, )

>
L
=
o
Y
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Write skew

* Occurs when transactions read overlapping sets of data but
write disjoint sets

* Snapshotisolation only checks for write-write conflicts on the same
record

key T1 (turn all 1s to 0s) T2 (turn all Os to 1s) key

A 1 R(A) A 0
R(B)

B 0

S3D
>Z2
L
=
A
—

B 1

Not serializable!
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Isolation vs. consistency

e |solation is about whether concurrent transactions interfere with
each other

* |solation models: serializable, snapshot isolation

 Consistency is about whether nodes see the same state
* Consistency models: linearizable, causal+, eventual
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Today

* Background on databases

* More on isolation
* MVCC and snapshot isolation

* More on sharding
* Data distribution strategies
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Data distribution strategies

* Words that mean similar things
* Sharding
* Partitioning
e Careful: could refer to data partitioning or network partitioning

* Distribution
* Careful: data can be distributed without being sharded
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Data distribution strategies

* Example: distribute data across three nodes

Range Netid in [aa0000, hz9999] Netid in [ia0000, sz0000] Netid in [ta0000, zz9999]

Round robin
Hash

All/broadcast

36



Data distribution strategies

* Example: distribute data across three nodes

Range Netid in [aa0000, hz9999] Netid in [ia0000, sz0000] Netid in [ta0000, zz9999]
Round robin Row 1, row 4, row 7, ... Row 2, row 5, row 8, ... Row 3, row 6, row 9, ...
Hash

All/broadcast

37



Data distribution strategies

* Example: distribute data across three nodes

Range Netid in [aa0000, hz9999] Netid in [ia0000, sz0000] Netid in [ta0000, zz9999]
Round robin Row 1, row 4, row 7, ... Row 2, row 5, row 8, ... Row 3, row 6, row 9, ...
Hash Hash(netid) mod 3=0 Hash(netid) mod 3 =1 Hash(netid) mod 3 =2

All/broadcast

38



Data distribution strategies

* Example: distribute data across three nodes

Range

Round robin
Hash

All/broadcast

Netid in [aa0000, hz9999]

Row 1, row 4, row 7, ...
Hash(netid) mod 3=0

All

Netid in [ia0000, sz0000]

Row 2, row 5, row 8, ...
Hash(netid) mod 3 =1

All

Netid in [ta0000, zz9999]

Row 3, row 6, row 9, ...
Hash(netid) mod 3 =2

All

39



Data distribution strategies

Need to select a Yes
column?

Load balancing Hard Easy Easy N/A

40



Data distribution strategies

Need to select a Yes

column?

Load balancing Hard Easy Easy N/A

Impact on joins Can be useful but Useless Good for large Good for small
makes load tables tables

balancing worse
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Distribution strategies and joins

as1234 Alice Smith

bwb5678 Bob Williams ECE
ECE 300

COS 400

Round robin distribution

Node 1
as1234 Alice Smith

mm
ECE 300

Joined records are not co-located on the same node
-> network communication overhead

Node 2
bw5678 Bob Williams

mm
COS 400

42




Distribution strategies and joins

Node 1
mmmm mmmm
as1234 Alice Smith

as1234 Alice Smith

bw5678 Bob Williams ECE mm
COS 400

major | enroliment_
ECE 300 Node 2
M mmmm

bwb678 Bob Willi
Hash distribution (on “major” column for both tables) W ° iHams

Joined records are co-located on the same node mm
ECE 300

-> No network communication overhead
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Distribution strategies and joins

mmmm

as1234 Alice Smith 2027
bwb5678 Bob Williams ECE 2026
' major | enroliment [l grad_yr | enroltment
ECE 300 2026 1500

COS 400 2027 1600

Node 1
mmmm
as1234 Alice Smith 2027
COS 400
Node 2

mmmm

bwb5678 Bob Williams 2026

| major _| enroliment _
ECE 300
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Distribution strategies and joins

Node 1
oo st nane st e Joior sy I X X T [T
as1234 Alice Smith 2027
as1234 Alice Smith 2027
bw5678 Bob Williams  ECE 2026 | grad_yr | enrollment |
| major | enroltment |
COS 400
ECE 300 2026 1500
Node 2
COS 400 2027 1600

mmmm

bwb5678 Bob Williams 2026
All/broadcast distribution for small tables

o | enroumens LSRG oobnert

Data is duplicated but network communication — 2026 1500

is minimized 2027 1600
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Today

* Background on databases

* More on isolation
* MVCC and snapshot isolation

* More on sharding
* Data distribution strategies
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