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COS 418: Distributed Systems
Lecture 18

Mike Freedman, Jialin Ding

Some slides from the Spanner OSDI talk
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Recap: Spanner is Strictly Serializable

* Efficient read-only transactions in strictly
serializable systems

* Strict serializability is desirable but costly!
* Reads are prevalent! (340x more than write txns)

* Efficient rotxns = good system overall performance

Recap: Ideas Behind Read-Only Txns

* Tag writes with physical timestamps upon commit
* Write txns are strictly serializable, e.g., 2PL

* Read-only txns return the writes, whose commit
timestamps precede the reads’ current time
* Rotxns are one-round, lock-free, and never abort

Recap: TrueTime

* Timestamping writes must enforce the invariant
* If T2 starts after T1 commits (finishes), then T2 must have a
larger timestamp

* TrueTime: partially-synchronized clock abstraction
* Bounded clock skew (uncertainty)
* TT.now() = [earliest, latest]; earliest <= T,,, <= latest
* Uncertainty (€) is kept short

* TrueTime enforces the invariant by
* Use at least TT.now().latest for timestamps

* Commit wait




Enforcing the Invariant with TT

If T2 starts after T1 commits (finishes), then T2 must

have a larger timestamp

Let T1 write Sz and T2 write Sa TT.after(15)
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Enforcing the Invariant with TT

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write Sg and T2 write S,
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Enforcing the Invariant with TT

* What if T1.commit delayed, such that T2 happens after T1.now() but

before T1.commit? Tricky as T1l.commit.ts = T1.now().latest

* Answer: T2 delayed until after T1 commits. Discussed later.

T2.now() T2.commit
=[18,22] (ts=22)

Sa /)Y\ ® >
[
/ \ N
T 3 5 8 1516 i{ 20y R
abs X T X 1 Al >
L7 wait N v,
N1 4
Ss P 4 >
T1.now() T1.commit
=[3,15] (ts=15) T2.ts > T1.ts

TrueTime

This Lecture

* How write transactions are done
* 2PL + 2PC (sometimes 2PL for short)
* How they are timestamped

* How read-only transactions are done
* How read timestamps are chosen
* How reads are executed




Read-Write Transactions (2PL)

* Three phases

o 66 b

Execute = Prepare - Commit

\ J
T

2PC: atomicity
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Read-Write Transactions (2PL)
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Txn T = {R(A=?), W(A=?+1), W(B=?+1), W(C=?+1)}

Execute:

« Does reads: grab read locks and return the most recent data, e.g., R(A=a)
« Client computes and buffers writes locally, e.g., A=a+1,B=a+1, C = a+1

Read-Write Transactions (2PL)
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Prepare:

« Choose a coordinator, e.g., A, others are participants

» Send buffered writes and the identity of the coordinator; grab write locks

« Each participant prepares T by logging a prepare record via Paxos with its
replicas. Coord skips prepare (Paxos Logging)

« Participants send OK to coord if lock grabbed and after Paxos logging is done
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Read-Write Transactions (2PL)
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Commit:
« After hearing from all participants, coord commits T if all OK; o/w, abort T
« Coord logs commit/abort record via Paxos, applies writes if commit, release locks
» Coord sends commit/abort messages to participants
« Participants log commit/abort via Paxos, apply writes if commit, release locks
« Coord sends result to client either after its “log commit” or after ack
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Timestamping Read-Write Transactions
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Timestamping: Tts=tsA ‘g

« Participant: choose timestamp (eg, tsg and tsc) larger than any writes it has applied
« Coordinator: choose a timestamp, e.g., tsa, larger than
+ Any writes it has applied
+ Any timestamps proposed by the participants, e.g., tsB and tsc
« lts current TT.now().latest
« Coord commit-waits: TT.after(ts,) == true. Commit-wait overlaps w Paxos logging
+ tsAis T's commit timestamp

Read-Only Transactions (shards part)
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Txn T’ = R(A=?, B=?, C=?)

« Client chooses a read timestamp ts = TT.now().latest

< If no prepared write, return the preceding write, e.g., on A

« If write prepared with ts’ > ts, no need to wait, proceed with read, eg, on B

« If write prepared with ts’ < ts, wait until write commits, e.g., on C
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Read-Only Transactions (Paxos part)
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Paxos writes are monotonic, e.g., writes with smaller timestamp must be applied
earlier, W, is applied before W3

T’ needs to wait until there exists a Paxos write with ts >10 (eg, W3), so all writes
before 10 are finalized

o

Put it together: a shard can process a read at ts if ts <= tgye

teate = MIN(EL7%, t10%,) : before tere, all system states (writes) have finalized
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Read-Only Transactions (Paxos part)
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« A shard can process a read at ts if ts <=ty
o teate = min(tfa“;‘:s, [ ,e) before tsqre, all system states (writes) have finalized
* tr0s = Timestamp of highest-applied Paxos write
. tSTaM,E infinity if zero prepared (but not committed) transactions
Else, min of all prepare timestamps of any prepared txns
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Serializable Snapshot Reads

* Client specifies a read timestamp way in the past

« E.g., one hour ago
* Read shards at the stale timestamp
* Serializable

* Old timestamp cannot ensure real-time order

* Better performance
* No waiting in any cases

« E.g., non-blocking, not just lock-free

* Can have performance but still strictly serializable?
 E.g., one-round, non-blocking, and strictly serializable

* Coming in next lecture!
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Takeaway

* Strictly serializable (externally consistent)
* Make it easy for developers to build apps!

* Reads dominant, make them efficient
* One-round, lock-free

* TrueTime exposes clock uncertainty
* Commit wait and at least TT.now.latest() for timestamps ensure
real-time ordering

* Globally-distributed database
* 2PL w/ 2PC over Paxos!
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