
11/11/25

1

Spanner

COS 418: Distributed Systems
Lecture 17

Mike Freedman, Jialin Ding

Some slides from the Spanner OSDI talk

1

Recap: Distributed Storage Systems

• Concurrency control
• Order transactions across shards

• State machine replication
• Replicas of a shard apply transactions in the same order

decided by concurrency control

2

Google’s Setting

• Dozens of datacenters (zones)

• Per zone, 100-1000s of servers

• Per server, 100-1000 shards (tablets)

• Every shard replicated for fault-tolerance (e.g., 5x)

3

Why Google Built Spanner

2005 – BigTable [OSDI 2006]

• Eventually consistent across datacenters
• Lesson: “don’t need distributed transactions”

2008? – MegaStore [CIDR 2011]
• Strongly consistent across datacenters
• Option for distributed transactions
• But performance was not great…

2011 – Spanner [OSDI 2012]
• Strictly Serializable Distributed Transactions
• “We wanted to make it easy for developers to build their applications”

4

11/11/25

2

Motivation: Performance-consistency tradeoff

• Strict serializability
• Serializability + linearizability
• As if coding on a single-threaded, transactionally isolated machine
• Spanner calls it external consistency

• Strict serializability makes building correct application easier

• Strict serializability is expensive
• Performance penalty in concurrency control + Repl.

• OCC/2PL: multiple round trips, locking, etc.

5

Motivation: Read-Only Transactions

• Transactions that only read data
• Predeclared, i.e., developer uses READ_ONLY flag / interface

• Reads dominate real-world workloads
• FB’s TAO had 500 reads : 1 write [ATC 2013]

• Google Ads (F1) on Spanner from 1? DC in 24h:
• 31.2 M single-shard read-write transactions
• 32.1 M multi-shard read-write transactions
• 21.5 B read-only (~340 times more)

• Determines system overall performance

6

Can we design a strictly serializable, geo-

replicated, sharded system with very fast
(efficient) read-only transactions?

7

Before we get to Spanner …

• How would you design SS read-only transactions?

• OCC or 2PL: Multiple round trips and locking

• Can always read in local datacenters like COPS?
• Maybe involved in Paxos agreement
• Or must contact the leader

• Performance penalties
• Round trips increase latency, especially in wide area
• Distributed lock management is costly, e.g., deadlocks

8

11/11/25

3

Goal is to …

•Make read-only transactions efficient
• One round trip (as could be wide-area)
• Lock-free
• No deadlocks
• Processing reads do not block writes, e.g., long-lived reads

• Always succeed (do not abort)

•And strictly serializable

9

Leveraging the Notion of Time

• Strict serializability: a matter of real-time ordering
• If txn T2 starts after T1 finishes, then T2 must be ordered after T1

• If T2 is ro-txn, then T2 should see effects of all writes finished before T2 started

• A similar scenario at a restaurant
• Alice arrives, writes her name and time she arrives (e.g., 5pm) on waiting list
• Bob then arrives, writes his name and the time (e.g., 5:10PM)

• Then Bob is ordered after Alice on the waiting list
• I arrive later at 5:15PM and check how many people are ahead of me by

checking the waiting list by time

10

Leveraging the Notion of Time

• Task 1: when committing a write, tag it with the current
physical time

• Task 2: when reading the system, check which writes were
committed before the time this read started.

• How about the serializable requirement?
• Physical time naturally gives a total order

11

Invariant:
If T2 starts after T1 commits (finishes),
then T2 must have a larger timestamp

Trivially provided by perfect clocks

12

11/11/25

4

(Obvious) Challenges

• Clocks are not perfect
• Clock skew: some clocks are faster/slower
• Clock skew may not be bounded
• Clock skew may not be known a priori

• T2 may be tagged with a smaller timestamp than T1 due to T2’s
slower clock

• Seems impossible to have perfect clocks in distributed systems.
What can we do?

13

Nearly perfect clocks

• Partially synchronized
• Clock skew is bounded and known a priori
• My clock shows 1:30PM, then I know the absolute (real) time is in

the range of 1:30 PM +/- X.
• e.g., between 1:20PM and 1:40PM if X = 10 mins

• Clock skew is short (e.g., X = a few milliseconds)

• Enable something special, e.g., Spanner!

14

Spanner: Google’s Globally-
Distributed Database

OSDI 2012

15

Scale-out vs. Fault Tolerance

• Every shard replicated via MultiPaxos (akin to RAFT)

• So every “operation” within transactions across tablets actually a
replicated operation within Paxos RSM

• Paxos groups can stretch across datacenters!

O

P

QQQ

PP

OO

16

11/11/25

5

Strictly Serializable Multi-shard Transactions

•How are clocks made “nearly perfect”?

•How does Spanner leverage these clocks?
• How are writes done and tagged?
• How read-only transactions are made efficient?

17

TrueTime (TT)
• “Global wall-clock time” with bounded uncertainty
• ε is worst-case clock divergence
• Spanner’s notion of time becomes intervals, not single values
• ε is 4ms on average, 2 ε is about 10ms

time

earliest latest

TT.now()

2*ε

Consider event enow which invoked tt = TT.now():

Guarantee: tt.earliest <= tabs(enow) <= tt.latest

18

TrueTime (TT)

• API (software interface)
• TT.now() = [earliest, latest] # latest – earliest = 2*ε

• TT.after(t) = true if t has passed

• TT.now().earliest > t (because tabs >= TT.now().earliest)

• TT.before(t) = true if t has not arrived

• TT.now().latest < t (because tabs <= TT.now().latest)

19

TrueTime (TT)

• Implementation
• Relies on specialized hardware,

e.g., satellite and atomic clocks

20

11/11/25

6

Enforcing the Invariant
If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB
T1.now()
= 5

5

Perfect Clocks

21

Enforcing the Invariant
If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB
T1.now()
= 5

5

Perfect Clocks

T1.commit
(ts = 5)

8

22

Enforcing the Invariant
If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB
T1.now()
= 5

5

Perfect Clocks

T1.commit
(ts = 5)

8
10

T2.now()
= 10

23

Enforcing the Invariant
If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB
T1.now()
= 5

5

Perfect Clocks

T1.commit
(ts = 5)

8
10

T2.commit
(ts = 10)

15

T2.now()
= 10

24

11/11/25

7

If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB

Imperfect Clocks

T1.now()
= 12

5

T1.commit
(ts = 12)

8
10 15

T2.ts < T1.ts

Enforcing the Invariant

T2.commit
(ts = 6)

T2.now()
= 6

25

If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB

TrueTime

T1.now()
= [3, 6]

T1.commit
(ts = 6)

8 10 15

T2.ts > T1.ts
Seems working?

3 6
125

Enforcing the Invariant

T2.commit
(ts = 12)

T2.now()
= [8, 12]

26

If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

T1.commit
(ts = 15)

8 10 15

T2.ts < T1.ts
Not working!

3
121

Enforcing the Invariant (Strawman)

T2.commit
(ts = 12)

T2.now()
= [1, 12]

27

A brain teaser puzzle

We know:
1. x < y, because T2 in real-time after T1 (the assumption)
2. c <= y <= d, because TrueTime
3. T1.ts = b, T2.ts = d, because how ts is assigned
We want: it is always true that b < d, how?

1

A brain teaser puzzle

We know:
1. x < y, b/c T2 in real-time after T1
2. c <= y <= d, b/c TrueTime
3. T1.ts = b, T2.ts = d, b/c how ts is assigned
We want: it is always true that d > b, how?

Tabs

SA

SB
T1.now()
= [a, b]

T1.commit
(ts = b)

x

T2.now()
= [c, d]

T2.commit
(ts = d)

b
a

dc y

28

11/11/25

8

A brain teaser puzzle

We know:
1. x < y, because T2 in real-time after T1 (the assumption)
2. c <= y <= d, because TrueTime
3. T1.ts = b, T2.ts = d, because how ts is assigned
We want: it is always true that b < d, how?
1 and 2 à x < d; we need to ensure b < x; then b < x < d, done.

1

A brain teaser puzzle

We know:
1. x < y, b/c T2 in real-time after T1
2. c <= y <= d, b/c TrueTime
3. T1.ts = b, T2.ts = d, b/c how ts is assigned
We want: it is always true that d > b, how?

Tabs

SA

SB
T1.now()
= [a, b]

T1.commit
(ts = b)

x

T2.now()
= [c, d]

T2.commit
(ts = d)

b
a

dc y

29

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

8 153

If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Enforcing the Invariant

30

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

T1.commit
(ts = 15)

8 20153 16

wait

TT.after(15)
== true

b

x

b < x

If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Enforcing the Invariant

31

If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

T1.commit
(ts = 15)

8 2015

T2.ts > T1.ts

3
22

16
18

wait

wait

Enforcing the Invariant

T2.commit
(ts = 22)

T2d.now()
= [18, 22]

32

11/11/25

9

• The invariant is always enforced: If T2 starts after T1 commits
(finishes), then T2 must have a larger timestamp

• How big/small ε is does not matter for correctness

• Only need to make sure:

• TT.now().latest is used for ts (in this example)

• Commit wait, i.e., TT.after(ts) == true

• ε must be known a priori and small so commit wait is doable!

Takeaways

33

After-class Puzzles

• Can we use TT.now().earliest for ts?

• Can we use TT.now().latest – 1 for ts?

• Can we use TT.now().latest + 1 for ts?

• Then what’s the rule of thumb for choosing ts?

34

