11/11/25

Spanner
Lod

COS 418: Distributed Systems
Lecture 17

Mike Freedman, Jialin Ding

Some slides from the Spanner OSDI talk

Recap: Distributed Storage Systems

* Concurrency control
* Order transactions across shards

* State machine replication
* Replicas of a shard apply transactions in the same order
decided by concurrency control

Why Google Built Spanner

2005 — BigTable [osbi 2006]
* Eventually consistent across datacenters

¢ Lesson: “don’t need distributed transactions”

2008? — MegaStore [cIDR 2011]
« Strongly consistent across datacenters
* Option for distributed transactions

* But performance was not great...

2011 —Spanner [osDI2012]
« Strictly Serializable Distributed Transactions
* “We wanted to make it easy for developers to build their applications”

1

Google’s Setting

* Dozens of datacenters (zones)

* Per zone, 100-1000s of servers

* Per server, 100-1000 shards (tablets)

* Every shard replicated for fault-tolerance (e.g., 5x)
3

11/11/25

Motivation: Performance-consistency tradeoff

* Strict serializability
* Serializability + linearizability
* As if coding on a single-threaded, transactionally isolated machine

* Spanner calls it external consistency

* Strict serializability makes building correct application easier

* Strict serializability is expensive
* Performance penalty in concurrency control + Repl.
¢ OCC/2PL: multiple round trips, locking, etc.

Motivation: Read-Only Transactions

* Transactions that only read data
* Predeclared, i.e., developer uses READ_ONLY flag / interface

* Reads dominate real-world workloads
* FB’s TAO had : 1 write [ATC 2013]

* Google Ads (F1) on Spanner from 1? DC in 24h:
* 31.2 M single-shard read-write transactions
* 32.1 M multi-shard read-write transactions
* 21.5 B read-only (~340 times more)

* Determines system overall performance

Can we design a strictly serializable, geo-
replicated, sharded system with very fast

(efficient) read-only transactions?

Before we get to Spanner ...

* How would you design SS read-only transactions?
* OCC or 2PL: Multiple round trips and locking

* Can always read in local datacenters like COPS?
* Maybe involved in Paxos agreement
* Or must contact the leader

* Performance penalties
* Round trips increase latency, especially in wide area
* Distributed lock management is costly, e.g., deadlocks

11/11/25

Goalisto ...

* Make read-only transactions efficient
* One round trip (as could be wide-area)
* Lock-free
* No deadlocks
* Processing reads do not block writes, e.g., long-lived reads

* Always succeed (do not abort)

* And strictly serializable

Leveraging the Notion of Time

* Strict serializability: a matter of real-time ordering
* If txn T2 starts after T1 finishes, then T2 must be ordered after T1

* If T2 is ro-txn, then T2 should see effects of all writes finished before T2 started

* A similar scenario at a restaurant
* Alice arrives, writes her name and time she arrives (e.g., 5pm) on waiting list
* Bob then arrives, writes his name and the time (e.g., 5:10PM)
* Then Bob is ordered after Alice on the waiting list

* | arrive later at 5:15PM and check how many people are ahead of me by
checking the waiting list by time

Leveraging the Notion of Time

* Task 1: when committing a write, tag it with the current
physical time

* Task 2: when reading the system, check which writes were
committed before the time this read started.

* How about the serializable requirement?
* Physical time naturally gives a total order

11

10
Invariant:
If T2 starts after T1 commits (finishes),
then T2 must have a larger timestamp
Trivially provided by perfect clocks

12

11/11/25

(Obvious) Challenges

* Clocks are not perfect
* Clock skew: some clocks are faster/slower
* Clock skew may not be bounded
* Clock skew may not be known a priori

* T2 may be tagged with a smaller timestamp than T1 due to T2’s
slower clock

* Seems impossible to have perfect clocks in distributed systems.
What can we do?

Nearly perfect clocks

* Partially synchronized
* Clock skew is bounded and known a priori
* My clock shows 1:30PM, then | know the absolute (real) time is in
the range of 1:30 PM +/- X.
* e.g., between 1:20PM and 1:40PM if X = 10 mins

* Clock skew is short (e.g., X = a few milliseconds)

* Enable something special, e.g., Spanner!

13

Spanner: Google’s Globally-
Distributed Database

OSDI 2012

14

Scale-out vs. Fault Tolerance

* Every shard replicated via MultiPaxos (akin to RAFT)

* So every “operation” within transactions across tablets actually a
replicated operation within Paxos RSM

* Paxos groups can stretch across datacenters!

16

Strictly Serializable Multi-shard Transactions

*How are clocks made “nearly perfect”?

*How does Spanner leverage these clocks?

* How are writes done and tagged?
* How read-only transactions are made efficient?

11/11/25

TrueTime (TT)

* “Global wall-clock time” with bounded uncertainty
* £ is worst-case clock divergence
* Spanner’s notion of time becomes intervals, not single values
* €is 4ms on average, 2 € is about 10ms

{ TTnow) | e

earliest latest
2*e
Consider event enow Which invoked tt = TT.now():

Guarantee: tt.earliest <= taps(€now) <= tt.latest

17

TrueTime (TT)

* API (software interface)
* TT.now() = [earliest, latest] # latest — earliest = 2*¢
* TT.after(t) = true if t has passed
* TT.now().earliest >t (because tips >= TT.now().earliest)
* TT.before(t) = true if t has not arrived

* TT.now().latest <t (because tips <= TT.now().latest)

18

19

TrueTime (TT)

* Implementation

’m 5
* Relies on specialized hardware, g - 4
e.g., satellite and atomic clocks % 3
= 2
1
Mal‘Z? ‘Mal 36 1\‘4«{3] i A[‘)r 16AM i SAMI 16AM T 12PM

Date Date (April 13)

Figure 6: Distribution of TrueTime ¢ values, sampled right
after timeslave daemon polls the time masters. 90th, 99th, and
99.9th percentiles are graphed.

20

11/11/25

Enforcing the Invariant

Let T1 write Sg and T2 write Sa

If T2 starts after T1 commits, then T2 must have larger timestamp

Sa >
5
Tabs 4 >
|
Sg ® >
T1.now()

Perfect Clocks

Enforcing the Invariant

If T2 starts after T1 commits, then
Let T1 write Sg and T2 write Sa

T2 must have larger timestamp

v

Sa

v

Tabs

@ -->w

Se ®

T1.now() T1.commit
=5 (ts =5)

Perfect Clocks

21

Enforcing the Invariant

Let T1 write Sg and T2 write Sa

If T2 starts after T1 commits, then T2 must have larger timestamp

T2.now()
=10

v

Sa

---¢

v

Tabs

@ -->u

—_
o

v

Sk ®

T1.now() T1.commit
=5 (ts=5)

Perfect Clocks

23

22
Enforcing the Invariant
If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write Sg and T2 write Sp T2.now() T2.commit
=10 (ts = 10)
Sa L 4 >
1
1
5 8 ¥ R
Tabs T 10 15 =
1
Sg ® ° >
T1.now() T1.commit
= (ts=5)
Perfect Clocks
24

Enforcing the Invariant

If T2 starts after T1 commits, then T2 must have larger timestamp

Let T1 write Sg and T2 write S 1, now() T2.commit

=6 (ts = 6)

Sa —» * >
5 .-°8 -

Tabs —’1_0,," 15 =

T1.now() T1.commit
=12 (ts = 12) T2ts < Ti.ts ¥

Imperfect Clocks

11/11/25

Enforcing the Invariant

If T2 starts after T1 commits, then T2 must have larger timestamp

Let T1 write Sg and T2 write Sa 1, now() T2.commit

=[8,12] (ts=12)

25
Enforcing the Invariant (Strawman)
If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write Sg and T2 write Sa T2.now() T2.commit
=[1,12] (ts=12)
Sa — ;\ ® >
-7 \x .
Teos X 8 __10--12° 15
Sg — ° >
T1.now() T1.commit
=[3,15] (ts=15) LZ.ts < Tk1_.ts'
TrueTime ot working!
27

SA w »
/,/ \\\
T 3 D 6 ‘/ N -
® X5 7 8 10 12 15
\\ /,
Sg & ° >
T1.now() T1.commit
=[3,6] (ts=6) T2.ts > Ti.ts
i ?
TrueTime Seems working?
26
A brain teaser puzzle
T2.now() T2.commit
=[c, d] (ts =d)
Sa —- TS >
o "‘—/—’ X i \\\ S
Tabs Ck : B ,f“d""b w
No--maTT
Sg — ° >
Ti.now() T1.commit
We know. =lb e=b)
1. x <y, because T2 in real-time after T1 (the assumption)
2. c <=y <=d, because TrueTime
3. Ti.ts =b, T2.ts = d, because how ts is assigned
We want: it is always true that b < d, how?
28

A brain teaser puzzle

T2.now() T2.commit

=[c,d ts=d
Sa ,Ef\] (-) .
—"—" I\\
P X 1 N
Tabs X : I__:j—"'b >
Sg - ° >
Ti.now() T1.commit
=[a, b ts = b)
We know: a0l ts=0)

1. x <y, because T2 in real-time after T1 (the assumption)

2. c<=Yy<=d, because TrueTime

3. Ti.ts =b, T2.ts = d, because how ts is assigned

We want: it is always true that b < d, how?

1and 2 2 x < d; we need to ensure b < x; then b < x < d, done.

Enforcing the Invariant

If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write Sg and T2 write Sa

Sa >
3 8 15
Tabs 13 B >
\ 7
\ '
\ . s
Sg *—= >
T1.now()
=3, 19]
TrueTime

30

29
Enforcing the Invariant
If T2 starts after T1 commits, the ave larger timestamp
Let T1 write Sg and T2 write S, | Tafter(15) |
==true <X
Sa >
3 8 1516 /20 _
Tabs 13 /)v r A >
\\\ ,/ wait \\\:,/l
Sg > . >
T1.now() T1.commit
=[3,15] (ts = 15)
b TrueTime
31

Enforcing the Invariant

If T2 starts after T1 commits, then T2 must have larger timestamp

Let T1 write Sg and T2 write Sp Tod.now() T2.commit

=[18,22] (ts = 22)

Sa - —
SN wait
T 3 8 1516 ¥ 20 “y R
b: b 4 >
abs k\ R . k\18 /ﬁ 22
N7 wait o

SB é/ ::/_\‘\é >
T1.now() T1.commit

=[3, 15] (ts=15) T2.ts > Ti.ts
TrueTime

32

11/11/25

Takeaways

* The invariant is always enforced: If T2 starts after T1 commits
(finishes), then T2 must have a larger timestamp

* How big/small € is does not matter for correctness

* Only need to make sure:
* TT.now().latest is used for ts (in this example)

¢ Commit wait, i.e., TT.after(ts) == true

* £ must be known a priori and small so commit wait is doable!

11/11/25

33

After-class Puzzles

* Can we use TT.now().earliest for ts?

* Can we use TT.now().latest — 1 for ts?
* Can we use TT.now().latest + 1 for ts?

* Then what’s the rule of thumb for choosing ts?

34

