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Spanner

COS 418: Distributed Systems
Lecture 17

Mike Freedman, Jialin Ding

Some slides from the Spanner OSDI talk
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Recap: Distributed Storage Systems

• Concurrency control
• Order transactions across shards

• State machine replication
• Replicas of a shard apply transactions in the same order 

decided by concurrency control
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Google’s Setting

• Dozens of datacenters (zones)

• Per zone, 100-1000s of servers

• Per server, 100-1000 shards (tablets)

• Every shard replicated for fault-tolerance (e.g., 5x)
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Why Google Built Spanner

2005  – BigTable [OSDI 2006]

• Eventually consistent across datacenters
• Lesson: “don’t need distributed transactions”

2008? – MegaStore [CIDR 2011] 
• Strongly consistent across datacenters
• Option for distributed transactions
• But performance was not great…

2011  – Spanner [OSDI 2012] 
• Strictly Serializable Distributed Transactions
• “We wanted to make it easy for developers to build their applications”
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Motivation: Performance-consistency tradeoff

• Strict serializability
• Serializability + linearizability
• As if coding on a single-threaded,  transactionally isolated machine
• Spanner calls it external consistency

• Strict serializability makes building correct application easier

• Strict serializability is expensive
• Performance penalty in concurrency control + Repl.

• OCC/2PL: multiple round trips, locking, etc.
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Motivation: Read-Only Transactions

• Transactions that only read data
• Predeclared, i.e., developer uses READ_ONLY flag / interface

• Reads dominate real-world workloads
• FB’s TAO had 500 reads : 1 write [ATC 2013]

• Google Ads (F1) on Spanner from 1? DC in 24h:
• 31.2 M single-shard read-write transactions
• 32.1 M multi-shard read-write transactions
• 21.5 B read-only (~340 times more)

• Determines system overall performance
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Can we design a strictly serializable, geo-

replicated, sharded system with very fast 
(efficient) read-only transactions?
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Before we get to Spanner …

• How would you design SS read-only transactions?

• OCC or 2PL:  Multiple round trips and locking

• Can always read in local datacenters like COPS?
• Maybe involved in Paxos agreement 
• Or must contact the leader

• Performance penalties
• Round trips increase latency, especially in wide area
• Distributed lock management is costly, e.g., deadlocks
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Goal is to …

•Make read-only transactions efficient
• One round trip (as could be wide-area)
• Lock-free
• No deadlocks
• Processing reads do not block writes, e.g., long-lived reads

• Always succeed (do not abort)

•And strictly serializable
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Leveraging the Notion of Time

• Strict serializability: a matter of real-time ordering
• If txn T2 starts after T1 finishes, then T2 must be ordered after T1 

• If T2 is ro-txn, then T2 should see effects of all writes finished before T2 started

• A similar scenario at a restaurant
• Alice arrives, writes her name and time she arrives (e.g., 5pm) on waiting list
• Bob then arrives, writes his name and the time (e.g., 5:10PM)

• Then Bob is ordered after Alice on the waiting list
• I arrive later at 5:15PM and check how many people are ahead of me by 

checking the waiting list by time
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Leveraging the Notion of Time

• Task 1: when committing a write, tag it with the current 
physical time

• Task 2: when reading the system, check which writes were 
committed before the time this read started.

• How about the serializable requirement?
• Physical time naturally gives a total order
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Invariant:
If T2 starts after T1 commits (finishes), 
then T2 must have a larger timestamp

Trivially provided by perfect clocks
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(Obvious) Challenges

• Clocks are not perfect
• Clock skew: some clocks are faster/slower
• Clock skew may not be bounded
• Clock skew may not be known a priori

• T2 may be tagged with a smaller timestamp than T1 due to T2’s 
slower clock

• Seems impossible to have perfect clocks in distributed systems. 
What can we do?
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Nearly perfect clocks

• Partially synchronized
• Clock skew is bounded and known a priori
• My clock shows 1:30PM, then I know the absolute (real) time is in 

the range of 1:30 PM +/- X. 
• e.g., between 1:20PM and 1:40PM if X = 10 mins  

• Clock skew is short  (e.g., X = a few milliseconds)

• Enable something special, e.g., Spanner!
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Spanner: Google’s Globally-
Distributed Database

OSDI 2012
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Scale-out vs. Fault Tolerance

• Every shard replicated via MultiPaxos (akin to RAFT)

• So every “operation” within transactions across tablets actually a 
replicated operation within Paxos RSM

• Paxos groups can stretch across datacenters!
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Strictly Serializable Multi-shard Transactions

•How are clocks made “nearly perfect”?

•How does Spanner leverage these clocks?
• How are writes done and tagged?
• How read-only transactions are made efficient?
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TrueTime (TT) 
• “Global wall-clock time” with bounded uncertainty
• ε is worst-case clock divergence
• Spanner’s notion of time becomes intervals, not single values
• ε is 4ms on average,  2 ε is about 10ms

time

earliest latest

TT.now()

2*ε

Consider event enow which invoked tt = TT.now():

Guarantee:  tt.earliest <= tabs(enow) <= tt.latest
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TrueTime (TT) 

• API (software interface)
• TT.now() = [earliest, latest]  # latest – earliest = 2*ε

• TT.after(t) = true if t has passed

• TT.now().earliest > t (because tabs >= TT.now().earliest)

• TT.before(t) = true if t has not arrived

• TT.now().latest < t (because tabs <= TT.now().latest)
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TrueTime (TT) 

• Implementation
• Relies on specialized hardware, 

e.g., satellite and atomic clocks
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Enforcing the Invariant
If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB
T1.now()
= 5

5

Perfect Clocks
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Enforcing the Invariant
If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB
T1.now()
= 5

5

Perfect Clocks

T1.commit
(ts = 5)

8
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Enforcing the Invariant
If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB
T1.now()
= 5

5

Perfect Clocks

T1.commit
(ts = 5)

8
10

T2.now()  
= 10
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Enforcing the Invariant
If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB
T1.now()
= 5

5

Perfect Clocks

T1.commit
(ts = 5)

8
10

T2.commit
(ts = 10)

15

T2.now()  
= 10
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If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB

Imperfect Clocks

T1.now()
= 12

5

T1.commit
(ts = 12)

8
10 15

T2.ts < T1.ts

Enforcing the Invariant

T2.commit
(ts = 6)

T2.now()  
= 6
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If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB

TrueTime

T1.now()
= [3, 6]

T1.commit
(ts = 6)

8 10 15

T2.ts > T1.ts
Seems working?

3 6
125

Enforcing the Invariant

T2.commit
(ts = 12)

T2.now()  
= [8, 12]
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If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

T1.commit
(ts = 15)

8 10 15

T2.ts < T1.ts
Not working!

3
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Enforcing the Invariant (Strawman)

T2.commit
(ts = 12)

T2.now()  
= [1, 12]
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A brain teaser puzzle

We know: 
1. x < y, because T2 in real-time after T1 (the assumption)
2. c <= y <= d, because TrueTime
3. T1.ts = b, T2.ts = d, because how ts is assigned
We want: it is always true that b < d, how? 

1

A brain teaser puzzle

We know: 
1. x < y, b/c T2 in real-time after T1
2. c <= y <= d, b/c TrueTime
3. T1.ts = b, T2.ts = d, b/c how ts is assigned
We want: it is always true that d > b, how?

Tabs

SA

SB
T1.now()
= [a, b]

T1.commit
(ts = b)

x

T2.now()
= [c, d]

T2.commit
(ts = d)

b
a

dc y
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A brain teaser puzzle

We know: 
1. x < y, because T2 in real-time after T1 (the assumption)
2. c <= y <= d, because TrueTime
3. T1.ts = b, T2.ts = d, because how ts is assigned
We want: it is always true that b < d, how? 
1 and 2 à x < d; we need to ensure b < x; then b < x < d, done.

1

A brain teaser puzzle

We know: 
1. x < y, b/c T2 in real-time after T1
2. c <= y <= d, b/c TrueTime
3. T1.ts = b, T2.ts = d, b/c how ts is assigned
We want: it is always true that d > b, how?

Tabs

SA

SB
T1.now()
= [a, b]

T1.commit
(ts = b)

x

T2.now()
= [c, d]

T2.commit
(ts = d)

b
a

dc y
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Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

8 153

If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Enforcing the Invariant
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Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

T1.commit
(ts = 15)

8 20153 16

wait

TT.after(15) 
== true

b

x

b < x

If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Enforcing the Invariant
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If T2 starts after T1 commits, then T2 must have larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

T1.commit
(ts = 15)

8 2015

T2.ts > T1.ts

3
22

16
18

wait

wait

Enforcing the Invariant

T2.commit
(ts = 22)

T2d.now()  
= [18, 22]
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• The invariant is always enforced: If T2 starts after T1 commits 
(finishes), then T2 must have a larger timestamp

• How big/small ε is does not matter for correctness

• Only need to make sure:

• TT.now().latest is used for ts (in this example)

• Commit wait, i.e., TT.after(ts) == true

• ε must be known a priori and small so commit wait is doable!

Takeaways
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After-class Puzzles

• Can we use TT.now().earliest for ts?

• Can we use TT.now().latest – 1 for ts?

• Can we use TT.now().latest + 1 for ts?

• Then what’s the rule of thumb for choosing ts?

34


