Raft: A Consensus Algorithm
for Replicated Logs

|
COS 418: Distributed Systems

Lectures 13-14

Mike Freedman, Jialin Ding

RAFT slides based on those from Diego Ongaro and John Ousterhout

1

Goal: Replicated Log
CEEHEEEE iJ\

shl

Clients

* Replicated log => replicated state machine
— All servers execute same commands in same order

— Group of 2f + 1 replicas can tolerate f replica crashes
« Consensus module ensures proper log replication

Consensus

Definition:
. A general agreement about something
. An idea or opinion that is shared by all the people in a group

Where do we use consensus?

» What is the order of operations

» Which operations are fully executed (committed) and not
* Who are the members of the group

» Who are the leaders of the group

Raft Overview

1. Leader election

. Normal operation (basic log replication)

. Safety and consistency after leader changes
. Neutralizing old leaders

. Client interactions

o O~ WM

. Reconfiguration

The Need For a Leader Election

* Recall consensus-based replication easier for f failed backup replicas
» But what if the f failures include a failed primary?

— All clients’ requests go to the failed primary

— System halts despite merely f failures

Leaders and Views

« Let different replicas assume role of leader (primary) over time
« System moves through a sequence of views

— View = { leader, { members }, settings }

View #1

Server States

+ At any given time, each server is either:
— Leader: handles all client interactions, log replication
— Follower: completely passive
— Candidate: used to elect a new leader

* Normal operation: 1 leader, N-1 followers

(Follower) (Candidate) (Leader)

Liveness Validation

 Servers start as followers

 Leaders send heartbeats (empty AppendEntries RPCs) to maintain
authority over followers

* If electionTimeout elapses with no RPCs (100-500ms), follower
assumes leader has crashed and starts new election

. timeout, X tes f
tlmeout_, new election receive votes from
start start election majority of servers

ﬂ N
(Candidate) (Leader)
@“_‘>_/ discover server with

discover current leader higher term
or higher term

Terms (aka epochs)

Term 1 Term2 Term3 Term 4 Term 5
Y i 1 1Y i

time

Split Vote Normal Operation

Elections

* Time divided into non-fixed-time terms
— Election (either failed or resulted in 1 leader)
— Normal operation under a single leader

« Each server maintains current term value

» Key role of terms: identify obsolete information

Elections

» Safety: allow at most one winner per term

— Each server votes only once per term (persists on disk)
— Two different candidates can’t get majorities in same term

:ect:?;tjz:ist; ;D Di D D D; Voted for

candidate A
Servers

 Liveness: some candidate eventually wins
— Each choose election timeouts randomly in [T, 2T]

— One usually initiates and wins election before others start
— Works well if T >> network RTT

Elections

» Start election:

— Increment current term, change to candidate state, vote for self

+ Send RequestVote to all other servers, retry until either:
1. Receive votes from majority of servers:
* Become leader

Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:
* Return to follower state

3. No-one wins election (election timeout elapses):
* Increment term, start new election

10

Elections

Technique used throughout
distributed systems:

Desynchronizes behavior
without centralized
coordination!

* Liveness: some candidate even
— Each choose election timeout:

— One usually initiates and wins election before others start
— Works well if T >> network RTT

ally wins

11

12

Log Structure

term 1.2 3 4 5 6 7 8 log index
1 1 1 2 3 3 3 3
}’;ddlcmpl ret |mov| jmp | div | shl | sub leader

command T o B
add ret [mov| jmp
1 1 1 2 B 8] B g
add |cmp| ret |mov| jmp | div | shl | sub

1
add [cmp

1 1 1 2 B 5] B
add |cmp| ret |mov| jmp | div | shi
I |
I 1

followers

committed entries
(stored on [N/2]+1 = 3 servers)

» Log entry = < index, term, command >
» Log stored on stable storage (disk); survives crashes
» Entry committed if known to be stored on majority of servers

— Durable / stable, will eventually be executed by state machines 13

13

Normal operation

* Crashed / slow followers?
— Leader retries RPCs until they succeed

* Performance is “optimal” in common case:
— One successful RPC to any majority of servers

Normal operation

« Client sends command to leader
« Leader appends command to its log
* Leader sends AppendEntries RPCs to followers
« Once new entry committed:
— Leader passes command to its state machine, sends result to client

— Leader piggybacks commitment to followers in later AppendEntries
— Followers pass committed commands to their state machines

14

Log Operation: Highly Coherent

1 2 3 4 5 6

1 1 1 2 3 3
server1 |add|cmp ret movl jmp | div |

1 1 1 2 3 4
server2 |add|cmp ret movl jmp | sub

+ If log entries on different server have same index and term:
— Store the same command
— Logs are identical in all preceding entries

« If given entry is committed, all preceding also committed

15

16

Log Operation: Consistency Check

2 3 14! 5

4
1
1 1 1T 21 3
leader AppendEntries succeeds:
. 7 T3 matching entry
follower

1 1 1 2 3]
SRR AL N o
add [cmp]| ret |mov p AppendEntries fails:
TT T T 7 mismatch
follower

» AppendEntries has <index,term> of entry preceding new ones
» Follower must contain matching entry; otherwise it rejects

* Implements an induction step, ensures coherency

17

Safety Requirement

Once log entry applied to a state machine, no other state

machine must apply a different value for that log entry

+ Raft safety property: If leader has decided log entry is committed,
entry will be present in logs of all future leaders

» Why does this guarantee higher-level goal?
1. Leaders never overwrite entries in their logs
2. Only entries in leader’s log can be committed
3. Entries must be committed before applying to state machine

e N

Committed — Present in future leaders’ logs

Restrictions on J k, Restrictions on

commitment leader election

Leader Changes

* New leader’s log is truth, no special steps, start normal operation
— Will eventually make follower’s logs identical to leader’s
— Old leader may have left entries partially replicated

« Multiple crashes can leave many extraneous log entries

logindex 1 2 3 4 5 6 7
e ™ sipt []s]e]e]e]
e[| [s]ef7]7]7]
s[5)¢]

S
S.

18

Picking the Best Leader

Committed?
Can't tell
which entries
committed! Unavailable during

leader transition

* Elect candidate most likely to contain all committed entries
— In RequestVote, candidates incl. index + term of last log entry

— Voter V denies vote if its log is “more complete”:
(newer term) or (entry in higher index of same term)

— Leader will have “most complete” log among electing majority

19

20

20

Committing Entry from Current Term

~— Leader for term 2

: -—— AppendEntries just succeeded

sS4 n Can’t be elected as
leader for term 3
-

» Case #1: Leader decides entry in current term is committed

» Safe: leader for term 3 must contain entry 4

21

21

Problem: Committing Entry from Earlier Term

1.2 3 4 5

Leader for term 4

AppendEntries just succeeded

+ Case #2: Leader trying to finish committing entry from earlier

» Entry 3 not safely committed:
— s5 can be elected as leader for term 5 (how?)
— If elected, it will overwrite entry 3 on sy, s, and s3

22

Solution: New Commitment Rules

1.2 3 4 5
4

5
*
s[t]r]2]¢]
s[1]
ss[1]r[s]s]s]
» For leader to decide entry is committed:
1. Entry stored on a majority

Leader for term 4

2. =1 new entry from leader’s term also on majority
+ Example; Once e4 committed, s; cannot be elected leader for term 5,
and e3 and e4 both safe 2

22

23

Challenge: Log Inconsistencies

1 2 3 4 5 6 7 8
[T EEEEE)
I

@[] []«]«]5]5]e]e] i =~ Missing

---------------------- <i'/‘Entries

o OO+ [s e Te [e o] o]
oLlilr]«[s[s]eleo[o]PITI\ evancous

@ ? /Entries
!
o [Tl e e[2)

9 10 11 12

Leader for term 8

Possible
followers

Leader changes can result in log inconsistencies

24

24

Repairing Follower Logs

nextindex

-
123456789”0:1112

Gl [5]5 e elel

Leader for term 7

Followers

+ New leader must make follower logs consistent with its own
— Delete extraneous entries
— Fill in missing entries

+ Leader keeps nextindex for each follower:
— Index of next log entry to send to that follower
— Initialized to (1 + leader’s last index)

- If AppendEntries consistency check fails, decrement nextindex, try again

25

Neutralizing Old Leaders

* Leader temporarily disconnected
— other servers elect new leader
— old leader reconnected
— old leader attempts to commit log entries

» Terms used to detect stale leaders (and candidates)
— Every RPC contains term of sender
— Sender’s term < receiver:

* Receiver: Rejects RPC (via ACK which sender processes...)
— Receiver’s term < sender:

« Receiver reverts to follower, updates term, processes RPC

* Election updates terms of majority of servers
— Deposed server cannot commit new log entries

27

27

Repairing Follower Logs

nextindex
1.2 3 6 7 8 9 10 11 12

Ll fedg el s e]e]e]
@[]
Before repair (f) [1 [1]1]2]2]2]3]3]s]3]3]
After repair (f)

Leader for term 7

26

Client Protocol

» Send commands to leader

— If leader unknown, contact any server, which redirects client to leader

Leader only responds after command logged, committed,
and executed by leader

« If request times out (e.g., leader crashes):
— Client reissues command to new leader (after possible redirect)

Ensure exactly-once semantics even with leader failures
— E.g., Leader can execute command then crash before responding
— Client should embed unique request ID in each command

— This unique request ID included in log entry

— Before accepting request, leader checks log for entry with same id 28

28

RECONFIGURATION

29

29

2-Phase Approach via Joint Consensus

» Joint consensus in intermediate phase: need majority of both old and new
configurations for elections, commitment

» Configuration change just a log entry; applied immediately on receipt
(committed or not)

» Once joint consensus is committed, begin replicating log entry for final config

Cold can make
unilateral decisions |
1

Cnew can make
unilateral decisions

Coldtnew * oo ee

Cold e— e s s oo

Cold+new entry
committed

Cnew entry time

committed 31

31

Configuration Changes

+ View configuration: {leader, { members}, settings }

+ Consensus must support changes to configuration:
e.d., replace failed machine, change degree of replication

+ Cannot switch directly from one config to another:
conflicting majorities could arise

Coi Chew
Server 1 | | L.
Server 2 |] Majority of Cois
Server 3 |]
Server 4 [] Majority of C,..
Server 5 [

=/
=
time

30

30

2-Phase Approach via Joint Consensus

» Any server from either configuration can serve as leader

* If leader not in Cew, must step down once Crpew committed

Cold can make
unilateral decisions
—_

Cnew can make
unilateral decisions

Crewssossese ——
Coldtnew ®*+ **+ ¢ smmmmm— o s s o © \ leader not in Cnew
Cold — s s s s o steps down here
Cold+new entry Cnew entry time

committed committed

32

32

Summary

* RAFT “looks like a single machine” that does not fail

— Use majority (f+1) out of 2f+1 replicas to make progress

* RAFT is similar to multi-paxos / viewstamped replication
— Details make it easier to understand and implement

+ Strong leader add constraints, but makes things simple
— Only vote for a leader with a log = your log

— Leader’s log is canonical, gets others replica’s logs to match

33

33

34

In Search of an Understandable
Consensus Algorithm

This paper is included in the Proceedings of USENIX ATC "14:
2014 USENIX Annual Technical Conference.
June 19-20, 2014 « Philadelphia, PA
9781:931971102

— Open access to the Proceedings of
. USENIX ATC '14: 2014 USENIX Annual Technical
\ Conference is sponsored by USENIX.

Production use of Raft [edi]

«CockroachDB uses Raft in the Replication Layer.(5)
«Etcd uses Raft to manage a highly-available replicated log (6]

«Hazelcast uses Ratt to provide its CP Subsystem, a strongly consistent layer for
distributed data structures. [7)

«MongoDB uses a variant of Ratt in the replication set.
«Neodj uses Raft to ensure consistency and safety. (¢
+RabbitMQ uses Ratt to implement durable, replicated FIFO queues. 9/
+ScyllaDB uses Raft for metadata (schema and topology changes) (101
+Splunk Enterprise uses Raft in a Search Head Cluster (SHC) ']
«TiDB uses Raft with the storage engine TiKV.[12)
+YugabyteDB uses Raft in the DocDB Replication (12
«ClickHouse uses Raft for in-house implementation of ZooKeeper-like service 14
+Redpanda uses the Raft consensus algorithm for data replication [15)

