
1

Raft: A Consensus Algorithm
for Replicated Logs

COS 418: Distributed Systems
Lectures 13-14

Mike Freedman, Jialin Ding

RAFT slides based on those from Diego Ongaro and John Ousterhout

1

• Replicated log => replicated state machine
– All servers execute same commands in same order
– Group of 2f + 1 replicas can tolerate f replica crashes

• Consensus module ensures proper log replication

Goal: Replicated Log

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

Servers

Clients
shl

2

2

Consensus
Definition:
• A general agreement about something
• An idea or opinion that is shared by all the people in a group

Where do we use consensus?
• What is the order of operations
• Which operations are fully executed (committed) and not
• Who are the members of the group
• Who are the leaders of the group

3

1. Leader election

2. Normal operation (basic log replication)

3. Safety and consistency after leader changes

4. Neutralizing old leaders

5. Client interactions

6. Reconfiguration

Raft Overview

4

4

2

The Need For a Leader Election
• Recall consensus-based replication easier for f failed backup replicas
• But what if the f failures include a failed primary?
– All clients’ requests go to the failed primary
– System halts despite merely f failures

5

5

Leaders and Views
• Let different replicas assume role of leader (primary) over time
• System moves through a sequence of views

– View = { leader, { members }, settings }

6

P

P
P

View #1

View #2

View #3

6

• At any given time, each server is either:
– Leader: handles all client interactions, log replication
– Follower: completely passive
– Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

Follower Candidate Leader

Server States

7

7

• Servers start as followers
• Leaders send heartbeats (empty AppendEntries RPCs) to maintain

authority over followers
• If electionTimeout elapses with no RPCs (100-500ms), follower

assumes leader has crashed and starts new election

Follower Candidate Leader

start
timeout,

start election
receive votes from
majority of servers

timeout,
new election

discover server with
 higher termdiscover current leader

or higher term

“step
down”

Liveness Validation

8

8

3

• Time divided into non-fixed-time terms
– Election (either failed or resulted in 1 leader)
– Normal operation under a single leader

• Each server maintains current term value

• Key role of terms: identify obsolete information

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote

Terms (aka epochs)

9

9

• Start election:
– Increment current term, change to candidate state, vote for self

• Send RequestVote to all other servers, retry until either:
1. Receive votes from majority of servers:
• Become leader
• Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:
• Return to follower state

3. No-one wins election (election timeout elapses):
• Increment term, start new election

Elections

10

10

• Safety: allow at most one winner per term
– Each server votes only once per term (persists on disk)
– Two different candidates can’t get majorities in same term

• Liveness: some candidate eventually wins
– Each choose election timeouts randomly in [T, 2T]
– One usually initiates and wins election before others start
– Works well if T >> network RTT

Servers

Voted for
candidate A

B can’t also
get majority

Elections

11

11

Elections

12

• Liveness: some candidate eventually wins
– Each choose election timeouts randomly in [T, 2T]
– One usually initiates and wins election before others start
– Works well if T >> network RTT

Technique used throughout
distributed systems:

Desynchronizes behavior
without centralized

coordination!

12

4

• Log entry = < index, term, command >
• Log stored on stable storage (disk); survives crashes
• Entry committed if known to be stored on majority of servers
– Durable / stable, will eventually be executed by state machines

1
add

1 2 3 4 5 6 7 8
3

jmp
1

cmp
1

ret
2

mov
3

div
3

shl
3

sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader
log index

followers

committed entries
(stored on ⌊N/2⌋+1 = 3 servers)

term

command

13

Log Structure

13

• Client sends command to leader
• Leader appends command to its log
• Leader sends AppendEntries RPCs to followers

• Once new entry committed:
– Leader passes command to its state machine, sends result to client
– Leader piggybacks commitment to followers in later AppendEntries
– Followers pass committed commands to their state machines 14

Normal operation

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

shl

14

• Crashed / slow followers?
– Leader retries RPCs until they succeed

• Performance is “optimal” in common case:
– One successful RPC to any majority of servers

15

Normal operation

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

shl

15

• If log entries on different server have same index and term:
– Store the same command
– Logs are identical in all preceding entries

• If given entry is committed, all preceding also committed

16

Log Operation: Highly Coherent

1
add

1 2 3 4 5 6
3

jmp
1

cmp
1

ret
2

mov
3

div

4
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

server1

server2

16

5

• AppendEntries has <index,term> of entry preceding new ones

• Follower must contain matching entry; otherwise it rejects

• Implements an induction step, ensures coherency
17

Log Operation: Consistency Check

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

2
mov

leader

follower

1 2 3 4 5

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

1
shl

leader

follower

AppendEntries succeeds:
matching entry

AppendEntries fails:
mismatch

17

• New leader’s log is truth, no special steps, start normal operation
– Will eventually make follower’s logs identical to leader’s
– Old leader may have left entries partially replicated

• Multiple crashes can leave many extraneous log entries

1 2 3 4 5 6 7log index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 41

1 1

7 7

2 2 3 3 3

2

7

term s1

s2

s3

s4

s5
18

Leader Changes

18

• Raft safety property: If leader has decided log entry is committed,
entry will be present in logs of all future leaders

• Why does this guarantee higher-level goal?
1. Leaders never overwrite entries in their logs
2. Only entries in leader’s log can be committed
3. Entries must be committed before applying to state machine

Committed → Present in future leaders’ logs
Restrictions on

commitment
Restrictions on
leader election

19

Safety Requirement
Once log entry applied to a state machine, no other state

machine must apply a different value for that log entry

19

• Elect candidate most likely to contain all committed entries
– In RequestVote, candidates incl. index + term of last log entry

– Voter V denies vote if its log is “more complete”:
(newer term) or (entry in higher index of same term)

– Leader will have “most complete” log among electing majority
20

Picking the Best Leader

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2 Unavailable during
leader transition

Committed?
Can’t tell

which entries
committed!

s1

s2

20

6

• Case #1: Leader decides entry in current term is committed

• Safe: leader for term 3 must contain entry 4

21

Committing Entry from Current Term
1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

2

2

2

2

2 Can’t be elected as
leader for term 3

AppendEntries just succeeded

Leader for term 2

21

• Case #2: Leader trying to finish committing entry from earlier

• Entry 3 not safely committed:
– s5 can be elected as leader for term 5 (how?)
– If elected, it will overwrite entry 3 on s1, s2, and s3 22

Problem: Committing Entry from Earlier Term
1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

AppendEntries just succeeded

Leader for term 4

3

22

• For leader to decide entry is committed:
1. Entry stored on a majority
2. ≥ 1 new entry from leader’s term also on majority

• Example; Once e4 committed, s5 cannot be elected leader for term 5,
and e3 and e4 both safe

Combination of election rules and commitment rules
makes Raft safe

23

Solution: New Commitment Rules
1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

4

4

3

Leader for term 4

23

Leader changes can result in log inconsistencies
24

Challenge: Log Inconsistencies

1 41 1 4 5 5 6 6 6Leader for term 8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

Possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Missing
Entries

Extraneous
Entries

1 2 3 4 5 6 7 8 9 10 11 12

24

7

Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7
1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1
Followers

2 2 33 3 3 32

(a)

(b)

nextIndex

• New leader must make follower logs consistent with its own
– Delete extraneous entries
– Fill in missing entries

• Leader keeps nextIndex for each follower:
– Index of next log entry to send to that follower
– Initialized to (1 + leader’s last index)

• If AppendEntries consistency check fails, decrement nextIndex, try again

25

Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7
1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1Before repair 2 2 33 3 3 32

(a)

(f)

1 1 1 4(f)

nextIndex

After repair

26

• Leader temporarily disconnected
→ other servers elect new leader

→ old leader reconnected
→ old leader attempts to commit log entries

• Terms used to detect stale leaders (and candidates)
– Every RPC contains term of sender
– Sender’s term < receiver:

• Receiver: Rejects RPC (via ACK which sender processes…)
– Receiver’s term < sender:

• Receiver reverts to follower, updates term, processes RPC

• Election updates terms of majority of servers
– Deposed server cannot commit new log entries

27

Neutralizing Old Leaders

27

• Send commands to leader
– If leader unknown, contact any server, which redirects client to leader

• Leader only responds after command logged, committed,
and executed by leader

• If request times out (e.g., leader crashes):
– Client reissues command to new leader (after possible redirect)

• Ensure exactly-once semantics even with leader failures
– E.g., Leader can execute command then crash before responding
– Client should embed unique request ID in each command
– This unique request ID included in log entry
– Before accepting request, leader checks log for entry with same id 28

Client Protocol

28

8

RECONFIGURATION

29

29

• View configuration: { leader, { members }, settings }
• Consensus must support changes to configuration:

e.g., replace failed machine, change degree of replication

• Cannot switch directly from one config to another:
conflicting majorities could arise

30

Configuration Changes

Cold Cnew

Server 1
Server 2
Server 3
Server 4
Server 5

time

Majority of Cold

Majority of Cnew

30

• Joint consensus in intermediate phase: need majority of both old and new
configurations for elections, commitment

• Configuration change just a log entry; applied immediately on receipt
(committed or not)

• Once joint consensus is committed, begin replicating log entry for final config

timeCold+new entry
committed

Cnew entry
committed

Cold

Cold+new

Cnew

Cold can make
unilateral decisions

Cnew can make
unilateral decisions

31

2-Phase Approach via Joint Consensus

31

• Any server from either configuration can serve as leader
• If leader not in Cnew, must step down once Cnew committed

timeCold+new entry
committed

Cnew entry
committed

Cold

Cold+new

Cnew

Cold can make
unilateral decisions

Cnew can make
unilateral decisions

32

2-Phase Approach via Joint Consensus

leader not in Cnew
steps down here

32

9

• RAFT “looks like a single machine” that does not fail
– Use majority (f+1) out of 2f+1 replicas to make progress

• RAFT is similar to multi-paxos / viewstamped replication
– Details make it easier to understand and implement

• Strong leader add constraints, but makes things simple
– Only vote for a leader with a log ≥ your log
– Leader’s log is canonical, gets others replica’s logs to match

33

Summary

33

34

34

