View Change Protocols
and Consensus

f| vET [NOV (M
TES | TAM
[l EN [TvM (§

COS 418/518: Distributed Systems
Lecture 12

Jialin Ding, Mike Freedman

Today

1. From primary-backup to viewstamped
replication

2. Consensus

Review: Primary-Backup Replication

HEHEEHEEE

" Loggin

Modu

.W%

g @&

add | jmp

mov

et

.

\

 Nominate one replica

— Clients send all requests to primary
— Primary orders clients’ requests

Clients

Servers

From Two to Many Replicas

CEEEEE Clets
)

4 LogginWﬂW% te)
Module achine Module achine oYlule Madhine
DD DD DD

Log\ Log\
dd | jmp [mov| s dd | jmp [mov | sh

= VAU

Servers

VAU

* Primary-backup with many replicas
— Primary waits for acknowledgement from all backups

What else can we do with more replicas?

* Viewstamped Replication:
— State Machine Replication for any number of replicas
Group of 2f + 1 replicas
* Protocol can tolerate f replica crashes

 Differences with primary-backup
— Don’t need to wait for all replicas to reply

Replica State

iIdentities of all 2f + 1 replicas

with clients’ requests in assigned order

(op1, argsi)|(op2, args2)| (op3, args3) |(op4, args4)|

Normal Operation =)

Request : Prepare : PrepareOK Reply
Client 1 I
\ I I Execute /
A (Primary) I : 3%
I 1
B i % i 7
: 1
C I :

Time 2

1. Primary adds request to end of its log
2. Replicas add requests to their logs in primary’s log order
3. Primary PrepareOKs - request is

Normal Operation: Key Points =)

Request Prepare PrepareOK Reply

Client

A (Primary)
C

* Protocol provides state machine replication

* On execute, primary knows request in f + 1 = 2 nodes’ logs
— Even if f =1 then crash, = 1 retains request in log

Execute

Time 2

Piggybacked Commits =1

Request Prepare PrepareOK Reply
Client
+Commit previous Execute
A (Primary)
: § {f
C
Time =2
* Previous Request’s commit on current Prepare

* No client Request after a timeout period?
— Primary sends Commit message to all backups

The Need For a View Change

» So far: Works for f failed backup replicas

« But what if the f failures include a failed primary?

— All clients’ requests go to the failed primary
— System halts

CEEEEEE

10

Views

* Let assume role of primary over time

« System moves through a sequence of views
(view number, primary id, backup id, ...)

CEEEEEE

llllllllll CEEEEEE

&: View #3 |

View #1

Correctly Changing Views

* View changes happen locally at each replica

» Old primary executes requests in the old view, new
primary executes requests in the new view

* So correctness condition: Executed requests
1. Survive in the new view
2. Retalin the same order in the new view

How do replicas agree to move to a new view?

How do replicas agree on what was executed
(and in what order) in the old view?

Consensus

* Definition:

1. A general agreement about something

2. An idea or opinion that is shared by all the
people in a group

Consensus

Given a set of processors, each with an initial value:

« Termination: All non-faulty processes eventually decide on a
value

« Agreement: All processes that decide do so on the same value

« Validity: Value decided must have proposed by some process

Safety vs. Liveness Properties

« Safety (bad things never happen)

* Liveness (good things eventually happen)

Paxos

« Safety (bad things never happen)

« Agreement: All processes that decide do so on the same value

« Validity: Value decided must have proposed by some process

* Liveness (good things eventually happen)

 Termination: All non-faulty processes eventually decide on a value

Paxos’s Safety and Liveness

* Paxos is always safe

» Paxos is very often live (but not always, more later)

* Also true for Viewstamped Replication, RAFT, and other
similar protocols

Roles of a Process In Paxos

* Three conceptual roles
propose values

accept values, where value is chosen if majority
accept

learn the outcome (chosen value)

* |n reality, a process can play any/all roles

Strawmen

* 3 proposers, 1 acceptor
— Acceptor accepts first value received
— No liveness with single failure

« 3 proposers, 3 acceptors

— Accept first value received, learners choose common value
known by majority

— But no such majority is guaranteed

Paxos

 Each acceptor accepts

— Hopefully one of multiple accepted proposals will have a majority
vote (and we determine that)

— If not, rinse and repeat (more on this)

 How do we select among multiple proposals?
— Ordering: proposal is tuple
— Proposal # strictly increasing, globally unique
— Globally unique?
* Trick: set low-order bits to proposer’s ID

Paxos Protocol Overview

1. Choose a proposal number n
2. Ask acceptors if any accepted proposals with n, < n
3. If existing proposal v, returned, propose same value (n, v,)

4. Otherwise, propose own value (n, v)
Note : goal Is to reach consensus, not “win”

try to accept value with highest proposal n
are passive and wait for the outcome

Paxos Phase 1

— Choose proposal n,
send <prepare, n> to
acceptors

* If n > n,
*n,=N <« promise not to accept
any new proposals n’ <n
* If no prior proposal accepted
* Reply < promise, n, @ >
 Else
* Reply < promise, n, (n, v, >
 Else
* Reply < prepare-failed >

24

Paxos Phase 2

— |If receive promise from of acceptors,
* Determine v, returned with highest n_, if exists

« Send <accept, (n, v, || v)> to acceptors

— Upon receiving (n, v), if n = n,,
* Accept proposal and notify learner(s)

Paxos Phase 3

need to know which value chosen

* Approach #1
— Each acceptor notifies all learners
— More expensive

* Approach #2
— Elect a “distinguished learner”
— Acceptors notify elected learner, which informs others
— Failure-prone

Paxos: Well-behaved Run

1 —— (1) (1 - (1) - (1)
\@/ \@ @

<accept, _ _ > decide
(1 !V1)> V1
<prepare, 1> . <promise, 1>

W

<accepted, (1 ,v¢)>

Paxos is Safe

* Intuition: if proposal with value v chosen, then every
higher-numbered proposal issued by any proposer has
value v.

Majority of
acceptors
accept (n, v):

Next prepare request
with proposal n+1

V IS chosen

Often, but not always, live
Process 0 Process 1

Completes phase 1
with proposal n0

Starts and completes phase
1 with proposal n1 > n0
Performs phase 2,
acceptors reject

Restarts and completes
phase 1 with proposal n2 >

n1 Performs phase 2, acceptors
reject
... can go on indefinitely ...

Paxos Summary

* Described for a single round of consensus

* Proposer, Acceptors, Learners
— Often implemented with nodes playing all roles

« Always safe: Quorum intersection
* Very often live

* Acceptors accept multiple values
— But only one value is ultimately chosen

* Once a value is accepted by a majority it is chosen

Flavors of Paxos

* Terminology is a mess
» Paxos loosely and confusingly defined...

o We'll stick with
—Basic Paxos
— Multi-Paxos

Flavors of Paxos: Basic Paxos

* Run the full protocol each time
—e.g., for each slot in the command log

 Takes 2 rounds until a value is chosen

Flavors of Paxos: Multi-Paxos

 Elect a leader and have them run 2"? phase directly
—e.g., for each slot in the command log
— Leader election uses Basic Paxos

 Takes 1 round until a value is chosen
— Faster than Basic Paxos

» Used extensively in practice!
—RAFT is similar to Multi Paxos

34

