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Today

1. From primary-backup to viewstamped 
replication

2. Consensus 
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Review: Primary-Backup Replication

• Nominate one replica primary
– Clients send all requests to primary
– Primary orders clients’ requests
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From Two to Many Replicas

• Primary-backup with many replicas
– Primary waits for acknowledgement from all backups
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What else can we do with more replicas?

• Viewstamped Replication:
– State Machine Replication for any number of replicas
– Replica group: Group of 2f + 1 replicas
• Protocol can tolerate f replica crashes

• Differences with primary-backup
– Don’t need to wait for all replicas to reply
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Replica State
1. Configuration: identities of all 2f + 1 replicas

2. Log with clients’ requests in assigned order
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Normal Operation

1. Primary adds request to end of its log
2. Replicas add requests to their logs in primary’s log order
3. Primary waits for f PrepareOKs à request is committed
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Normal Operation: Key Points

• Protocol provides state machine replication
• On execute, primary knows request in f + 1 = 2 nodes’ logs

– Even if f = 1 then crash, ≥ 1 retains request in log
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Piggybacked Commits

• Previous Request’s commit piggybacked on current Prepare
• No client Request after a timeout period?
– Primary sends Commit message to all backups
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The Need For a View Change

• So far: Works for f failed backup replicas
• But what if the f failures include a failed primary?
– All clients’ requests go to the failed primary
– System halts
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Views
• Let different replicas assume role of primary over time
• System moves through a sequence of views
– View = (view number, primary id, backup id, ...)
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Correctly Changing Views

• View changes happen locally at each replica
• Old primary executes requests in the old view, new 

primary executes requests in the new view

• So correctness condition: Executed requests
1. Survive in the new view
2. Retain the same order in the new view
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How do replicas agree to move to a new view?

How do replicas agree on what was executed 
(and in what order) in the old view?



Consensus

• Definition:

1. A general agreement about something 
2. An idea or opinion that is shared by all the 

people in a group



Consensus

Given a set of processors, each with an initial value:

• Termination:  All non-faulty processes eventually decide on a 
value

• Agreement:  All processes that decide do so on the same value 

• Validity:  Value decided must have proposed by some process



Safety vs. Liveness Properties

• Safety (bad things never happen)

• Liveness (good things eventually happen)



Paxos

• Safety (bad things never happen)
• Agreement:  All processes that decide do so on the same value 

• Validity:  Value decided must have proposed by some process

• Liveness (good things eventually happen)

• Termination:  All non-faulty processes eventually decide on a value



Paxos’s Safety and Liveness
• Paxos is always safe

• Paxos is very often live  (but not always, more later)

• Also true for Viewstamped Replication, RAFT, and other 
similar protocols



Roles of a Process in Paxos

• Three conceptual roles
– Proposers propose values
– Acceptors accept values, where value is chosen if majority 

accept
– Learners learn the outcome (chosen value)

• In reality, a process can play any/all roles
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Strawmen

• 3 proposers, 1 acceptor
– Acceptor accepts first value received
– No liveness with single failure

• 3 proposers, 3 acceptors
– Accept first value received, learners choose common value 

known by majority
– But no such majority is guaranteed
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Paxos

• Each acceptor accepts multiple proposals
– Hopefully one of multiple accepted proposals will have a majority 

vote (and we determine that)
– If not, rinse and repeat (more on this)

• How do we select among multiple proposals?
– Ordering: proposal is tuple (proposal #, value) = (n, v)
– Proposal # strictly increasing, globally unique
– Globally unique?
• Trick: set low-order bits to proposer’s ID

22



Paxos Protocol Overview

• Proposers:
1. Choose a proposal number n
2. Ask acceptors if any accepted proposals with na < n
3. If existing proposal va returned, propose same value (n, va)
4. Otherwise, propose own value (n, v)
Note altruism: goal is to reach consensus, not “win”

• Accepters try to accept value with highest proposal n
• Learners are passive and wait for the outcome
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• Proposer:
– Choose proposal n,    

send <prepare, n> to 
acceptors
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• Acceptors:
• If n > nh

• nh = n     ← promise not to accept
  any new proposals n’ < n
• If no prior proposal accepted
• Reply < promise, n, Ø >

• Else 
• Reply < promise, n, (na , va)  >

• Else
• Reply < prepare-failed >

Paxos Phase 1



Paxos Phase 2

• Proposer:
– If receive promise from majority of acceptors, 
• Determine va returned with highest na, if exists
• Send  <accept, (n, va || v)>  to acceptors

• Acceptors:
– Upon receiving (n, v),  if n ≥ nh,
• Accept proposal and notify learner(s)
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Paxos Phase 3

• Learners need to know which value chosen
• Approach #1
– Each acceptor notifies all learners
–More expensive

• Approach #2
– Elect a “distinguished learner”
– Acceptors notify elected learner, which informs others
– Failure-prone
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Paxos:  Well-behaved Run
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Paxos is Safe
• Intuition:  if proposal with value v chosen, then every 

higher-numbered proposal issued by any proposer has 
value v.
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Often, but not always, live

Completes phase 1 
with proposal n0
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Paxos Summary

• Described for a single round of consensus
• Proposer, Acceptors, Learners
– Often implemented with nodes playing all roles

• Always safe:  Quorum intersection
• Very often live
• Acceptors accept multiple values
– But only one value is ultimately chosen

• Once a value is accepted by a majority it is chosen



Flavors of Paxos
• Terminology is a mess
• Paxos loosely and confusingly defined…

• We’ll stick with
–Basic Paxos
–Multi-Paxos



Flavors of Paxos: Basic Paxos
• Run the full protocol each time
–e.g., for each slot in the command log

• Takes 2 rounds until a value is chosen



Flavors of Paxos: Multi-Paxos

• Elect a leader and have them run 2nd phase directly
–e.g., for each slot in the command log
–Leader election uses Basic Paxos

• Takes 1 round until a value is chosen
–Faster than Basic Paxos

• Used extensively in practice!
–RAFT is similar to Multi Paxos
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