Concurrent Programming
(Part 4)

Copyright © 2025 by
Robert M. Dondero, Ph.D.
Princeton University

Objectives

. We will cover:
- Realistic example: I/O delays
- Realistic example: compute delays
- The Python GIL
- Concurrency commentary

Agenda

. Realistic example: I/0 delays

. Realistic example: compute delays
. The Python GIL

. Concurrency commentary

Realistic Example: |/O Delays

Recall daytime app

(1) current day

daytimeclient.py | and time daytimeserver.py

(2) current day
and time

\
stdout

Realistic Example: |/O Delays

. See DaytimelODelay application

- Almost same as DayTime app from Network
Programming lectures

- daytimeclient.py

- daytimeserver.py

- Enhanced to implement iodelay

— Delay caused by waiting for another service (e.g.,
database)

Realistic Example: I/O Delays

See DaytimelODelay app:

$ export IODELAY=5
$ python daytimeserver.py 55555

S date Opened server socket
Wed Sep 25 13:23:52 EDT 2024 Bound server socket to port
S Listening

Accepted connection
Opened socket
Closed socket

$ python daytimeclient.py localhost 55555 Accepted connection

Wed Sep 25 13:23:58 2024 Opened socket

S Closed socket
Accepted connection

$ python daytimeclient.py localhost 55555 Opened socket

Wed Sep 25 13:24:03 2024 Closed socket

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:24:08 2024
$

Acceptable?

Realistic Example: |/O Delays

. See DaytimelODelayP
- daytimeclient.py

- daytimeserver.py

- Forks a new process to handle each client
request

Realistic Example: I/O Delays

See DaytimelODelayP app:

$ export IODELAY=5
$ python daytimeserver 55555
Opened server socket

Bound server socket to port

S date
Wed Sep 25 13:25:48 EDT 2024

$

Listening
Accepted connection

Opened socket

Closed socket in parent process
Forked child process
Closed socket in child process

Exiting child process

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:25:54 2024
$

Accepted connection
Opened socket
Closed socket in parent process

Forked child process

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:25:55 2024
S

Closed socket in child process

Exiting child process

Accepted connection
Op

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:25:55 2024
$

Acceptable?

Exiting child

Aside: Zombies

Parent process forks child process
Parent process waits for (reaps) child process

Parent process forks child process

Parent process proceeds

Child process exits

Parent process receives SIGCHLD signal

Parent process waits for (reaps) child process

Parent process forks child process
Parent process proceeds
Parent process forks child process

Proper
pattern

Alternative
proper
pattern

Acceptable
In
Python

Realistic Example: |/O Delays

. See DaytimelODelayT
- daytimeclient.py

- daytimeserver.py

- Spawns a new thread to handle each client
request

10

Realistic Example: I/O Delays

See DaytimelODelayT app:

S date
Wed Sep 25 13:27:01 EDT 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:27:06 2024
$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:27:07 2024
S

S python daytimeclient.py localhost 55555
Wed Sep 25 13:27:07 2024
$

$ export IODELAY=5

$ python daytimeserver.py 55555
Opened server socket

Bound server socket to port
Listening

Accepted connection

Opened socket

Spawned child thread

Closed socket in child thread
Exiting child thread

Accepted connection

Opened socket

Spawned child thread

Closed socket in child thread
Exiting child thread
Accepted connection

Opened socket

Spawned child ea

Acceptable?

11

Agenda

. Environment variables

. Realistic example: I/O delays
. Realistic example: compute delays

he Python GIL
. Concurrency commentary

12

Realistic Example: Compute Delays

. See DaytimeCDelay application
- [Almost same as DayTime app from Network
Programming lectures]
- daytimeclient.py

- daytimeserver.py

- Enhanced to implement cdelay

— Delay caused by performing a time-consuming
computation (e.g., matrix manipulation)

13

Realistic Example: Compute Delays

See DaytimeCDelay app:

S date
Wed Sep 25 13:40:48 EDT 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:40:54 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:40:59 2024
$

S export CDELAY=5

$ python daytimeserver.py 55555
Opened server socket

Bound server socket to port
Listening

Accepted connection

Opened socket

Closed socket

Accepted connection

Opened socket

Closed socket

Accepted connection

Opened socket

Closed socket

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:41:04 2024
$

Acceptable?

14

Realistic Example: Compute Delays

. See DaytimeCDelayP
- daytimeclient.py

- daytimeserver.py

- Forks a new process to handle each client
request

15

Realistic Example: Compute Delays

$ export CDELAY=5

See DaytimeCDeIayP app $ python daytimeserver.py 55555

Opened server socket

Bound server socket to port

S date Listening
Wed Sep 25 13:42:13 EDT 2024 Accepted connection
S Opened socket

Closed socket in parent process
Forked child process
Closed socket in child process

Exiting child process

$ python daytimeclient.py localhost 55555 Accepted connection
Wed Sep 25 13:42:18 2024 Opened socket
S Closed socket in parent process

Forked child process

. . Closed socket in child process
$ python daytimeclient.py localhost 55555

Wed Sep 25 13:42:19 2024
$

Exiting child process

Accepted connection

$ python daytimeclient.py localhost 55555 Acceptable?

Wed Sep 25 13:42:19 2024
$

Exiting chil

Realistic Example: Compute Delays

. See DaytimeCDelayT
- daytimeclient.py

- daytimeserver.py

- Spawns a new thread to handle each client
request

17

Realistic Example: Compute Delays

$ export CDELAY=5
$ python daytimeserver.py 55555

See DaytimeCDelayT app:

Opened server socket

S date Bound server socket to port
Wed Sep 25 13:45:09 EDT 2024 Listening
5 Accepted connection

Opened socket

Spawned child thread

Closed socket in child thread
Exiting child thread

$ python daytimeclient.py localhost 55555

Wed Sep 25 13:45:24 2024 ,
Accepted connection

v Opened socket
Spawned child thread
$ python daytimeclient.py localhost 55555 Closed socket in child thread
Wed Sep 25 13:45:23 2024 Exiting child thread
S Accepted connection
Opened socket
S python daytimeclient.py localhost 55555 S
W 25 13:45:24 2024
o e Acceptable?

18

Agenda

. Realistic example: I/O delays

. Realistic example: Compute delays
. The Python GIL

. Concurrency commentary

19

The Python GIL

. Suppose process has threads T1 and T2
. In principle:
- Multiple processors available =>

T1 and T2 run in parallel

. In Java and C/pthread:

- Multiple processors available =>
T1 and T2 run in parallel

20

The Python GIL

. In Python (specifically CPython):
- Multiple processors available =>
T1 and T2 do not run in parallel!!!

- Global Interpreter Lock (GIL)

- Allows only one of P1’s threads to execute at a
time...

- As if only one processor exists

21

The Python GIL

. GIL advantages

- Simplifies Python memory management
(reference counting)

. GIL disadvantage

- As described previously...

- Multi-threaded programs can use only one
processor (at a time)
- Multiple threads cannot run in parallel

22

The Python GIL

. S0, In Python...

Kind of Then use:
Program

I/0-bound Program waits for DB Thread-level

comm to complete concurrency
Compute- Program performs Process-level
bound complex math concurrency *
computation

* But better not to use Python at all!
23

The Python GIL

. S0, more generally...

Kind of Likely | Likely to implement
Pgmming to use: | concurrency via:

System-level C Multiple processes
programming

Application-level Java Multiple threads
programming For I/O-bound pgms
For compute-bound pgms

Application-level Python | Multiple threads
programming For I/O-bound pgms

24

Agenda

. Realistic example: I/O delays

. Realistic example: compute delays
. The Python GIL
. Concurrency commentary

25

Concurrency Commentary

. Process-level concurrency is:

- Essential, esp. at system level

- Safe: concurrent processes share no data
- Slow: forking processes is relatively slow

. Thread-level concurrency is:

- Essential, esp. at application level
- Dangerous: concurrent threads can share
objects => potential race conditions, potential

deadlocks
- Fast: spawning threads is relatively fast

26

Concurrency Commentary

. Some rhetorical questions:

- Should all objects automatically be

thread-safe?

- Should all fields automatically be private and all
methods automatically be “locked™?

“It is astounding to me that Java’s insecure
parallelism is taken seriously by the
programming community, a quarter of a
century after the invention of monitors and
Concurrent Pascal. It has no merit.”

-- Per Brinch Hansen, 1999

27

Concurrency Commentary

. Some rhetorical questions (cont.):
- Should methods be “locked” by default?

- Should we use process-level concurrency
instead of thread-level concurrency
whenever possible?

- In the long run, is thread-level concurrency a
passing phase?

28

Lecture Summary

. In this lecture we covered:

- Realistic example: I/O delays
- Realistic example: compute delays

- The Python GIL
- Concurrency commentary

29

Lecture Series Summary

. In this lecture series we covered:
- How to fork and wait for processes
- How to spawn and join threads
- Race conditions and how to avoid them
- Environment variables
- Realistic examples
- The Python GIL
- Commentary

. See also:
- Appendix 1: Deadlocks

30

More Information

 The COS 333 Lectures web page
provides references to supplementary
information

Appendix 1:
Deadlocks

Deadlocks

- Problem: Deadlock

- Simplest case...

- Thread1

- Has the lock on object1
- Needs the lock on object2

- Thread?2

- Has the lock on object2
- Needs the lock on object1

- Thread1 and thread2 block forever

33

Deadlocks

. See deadlock.py

alice_acct: 0
bob acct: O

alice_to_bob thread

- Transfer 1 from alice_acct to bob_acct, 1000
times

bob to alice thread

- Transfer 1 from bob acct to alice_acct, 1000
times

alice_acct: 0
bob acct: O

34

Deadlocks

. See deadlock.py (cont.)

$ python deadlock.py

Alice: -260

Bob: 26
Alice: =27
Bob: 27
Alice: -28
Bob: 28
Alice: -29
Bob: 29
Alice: -30
Bob: 30

$ python deadlock.py

Alice: -100
Bob: 100
Alice: -101
Bob: 101
Alice: -102
Bob: 102
Alice: -103
Bob: 103
Alice: -104
Bob: 104

35

Deadlocks

Two BankAcct objects:
aliceAcct, bobAcct

. See deadlock.py

Two Threads:
aliceToBobThread,

Deadlock bobToAliceThread
(1) start() (2) start()
[alice_to_bob thread] [bob_to_alice_thread]
(3) alice_acct.trdnsfer_to(bob acct, 1) (4) bob_acct.transfer _to(alice_acct, 1)
[alice_acct] [bob_acct]
alice_to_bob thread bob to alice thread
Has lock on alice acct Has lock on bob_acct
Needs lock on bob_acct Needs lock on alice_acct 36

Deadlocks

. See deadlockw.py

- Uses with statement

37

Deadlocks

. Deadlock general case (circular chain):

Thread1 has the lock on object1; needs the
lock on object2

Thread2 has the lock on object2; needs the
lock on object3

Thread N has the lock on object N; needs the

lock on object 1

38

Deadlocks

. Solution:
- Make sure there are no circular chains!

- Give each shared resources a sequence
number

- Pact: Thread must acquire shared resources
In order by sequence number

39

Deadlocks

. See nodeadlock.py

$ python nodeadlock.py

Alice: -4
Bob: 3
Alice: -3
Bob: 2
Alice: -2
Bob: 1
Alice: -1
Bob: 0
Alice: O
Finished

S

$ python nodeadlock.py

Bob: -4
Alice: 3
Bob: -3
Alice: 2
Bob: -2
Alice: 1
Bob: -1
Alice: O
Bob: O
Finished

S

40

Deadlocks

. See nodeadlockw.py

- Uses with statement

41

