
Concurrent Programming
(Part 4)

Copyright © 2025 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– Realistic example: I/O delays
– Realistic example: compute delays
– The Python GIL
– Concurrency commentary

2

Agenda

• Realistic example: I/O delays
• Realistic example: compute delays
• The Python GIL
• Concurrency commentary

3

Realistic Example: I/O Delays

4

daytimeclient.py daytimeserver.py
(1) current day
 and time

stdout

(2) current day
 and time

Recall daytime app

Realistic Example: I/O Delays

• See DaytimeIODelay application
– Almost same as DayTime app from Network

Programming lectures
– daytimeclient.py
– daytimeserver.py

• Enhanced to implement iodelay
– Delay caused by waiting for another service (e.g.,

database)

5

Realistic Example: I/O Delays

6

$ export IODELAY=5
$ python daytimeserver.py 55555
Opened server socket

Bound server socket to port

Listening

Accepted connection

Opened socket

Closed socket

Accepted connection

Opened socket

Closed socket

Accepted connection

Opened socket

Closed socket

See DaytimeIODelay app:

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:23:58 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:24:03 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:24:08 2024

$

$ date
Wed Sep 25 13:23:52 EDT 2024

$

Acceptable?

Realistic Example: I/O Delays

• See DaytimeIODelayP
– daytimeclient.py
– daytimeserver.py

• Forks a new process to handle each client
request

7

Realistic Example: I/O Delays

8

$ export IODELAY=5
$ python daytimeserver 55555
Opened server socket

Bound server socket to port

Listening

Accepted connection

Opened socket

Closed socket in parent process

Forked child process

Closed socket in child process

Exiting child process

Accepted connection

Opened socket

Closed socket in parent process

Forked child process

Closed socket in child process

Exiting child process

Accepted connection

Opened socket

Closed socket in parent process

Forked child process

Closed socket in child process

Exiting child process

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:25:54 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:25:55 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:25:55 2024

$

$ date
Wed Sep 25 13:25:48 EDT 2024

$

See DaytimeIODelayP app:

Acceptable?

Aside: Zombies

9

Parent process forks child process
Parent process waits for (reaps) child process

Parent process forks child process
Parent process proceeds
Child process exits
Parent process receives SIGCHLD signal
Parent process waits for (reaps) child process

Parent process forks child process
Parent process proceeds
Parent process forks child process

Proper
pattern

Alternative
proper
pattern

Acceptable
in
Python

Realistic Example: I/O Delays

• See DaytimeIODelayT
– daytimeclient.py
– daytimeserver.py

• Spawns a new thread to handle each client
request

10

Realistic Example: I/O Delays

11

$ export IODELAY=5
$ python daytimeserver.py 55555
Opened server socket

Bound server socket to port

Listening

Accepted connection

Opened socket

Spawned child thread

Closed socket in child thread

Exiting child thread

Accepted connection

Opened socket

Spawned child thread

Closed socket in child thread

Exiting child thread

Accepted connection

Opened socket

Spawned child thread

Closed socket in child thread

Exiting child thread

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:27:06 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:27:07 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:27:07 2024

$

$ date
Wed Sep 25 13:27:01 EDT 2024

$

See DaytimeIODelayT app:

Acceptable?

Agenda

• Environment variables
• Realistic example: I/O delays
• Realistic example: compute delays
• The Python GIL
• Concurrency commentary

12

Realistic Example: Compute Delays

• See DaytimeCDelay application
– [Almost same as DayTime app from Network

Programming lectures]
– daytimeclient.py
– daytimeserver.py

• Enhanced to implement cdelay
– Delay caused by performing a time-consuming

computation (e.g., matrix manipulation)

13

Realistic Example: Compute Delays

14

$ export CDELAY=5
$ python daytimeserver.py 55555
Opened server socket

Bound server socket to port

Listening

Accepted connection

Opened socket

Closed socket

Accepted connection

Opened socket

Closed socket

Accepted connection

Opened socket

Closed socket

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:40:54 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:40:59 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:41:04 2024

$

$ date
Wed Sep 25 13:40:48 EDT 2024

$

See DaytimeCDelay app:

Acceptable?

Realistic Example: Compute Delays

• See DaytimeCDelayP
– daytimeclient.py
– daytimeserver.py

• Forks a new process to handle each client
request

15

Realistic Example: Compute Delays

16

$ export CDELAY=5
$ python daytimeserver.py 55555
Opened server socket

Bound server socket to port

Listening

Accepted connection

Opened socket

Closed socket in parent process

Forked child process

Closed socket in child process

Exiting child process

Accepted connection

Opened socket

Closed socket in parent process

Forked child process

Closed socket in child process

Exiting child process

Accepted connection

Opened socket

Closed socket in parent process

Forked child process

Closed socket in child process

Exiting child process

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:42:18 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:42:19 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:42:19 2024

$

$ date
Wed Sep 25 13:42:13 EDT 2024

$

See DaytimeCDelayP app:

Acceptable?

Realistic Example: Compute Delays

• See DaytimeCDelayT
– daytimeclient.py
– daytimeserver.py

• Spawns a new thread to handle each client
request

17

Realistic Example: Compute Delays

18

$ export CDELAY=5
$ python daytimeserver.py 55555
Opened server socket

Bound server socket to port

Listening

Accepted connection

Opened socket

Spawned child thread

Closed socket in child thread

Exiting child thread

Accepted connection

Opened socket

Spawned child thread

Closed socket in child thread

Exiting child thread

Accepted connection

Opened socket

Spawned child thread

Closed socket in child thread

Exiting child thread

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:45:24 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:45:23 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:45:24 2024

$

$ date
Wed Sep 25 13:45:09 EDT 2024

$

See DaytimeCDelayT app:

Acceptable?

Agenda

• Realistic example: I/O delays
• Realistic example: Compute delays
• The Python GIL
• Concurrency commentary

19

The Python GIL

• Suppose process has threads T1 and T2
• In principle:

– Multiple processors available =>
T1 and T2 run in parallel

• In Java and C/pthread:
– Multiple processors available =>

T1 and T2 run in parallel

20

The Python GIL

• In Python (specifically CPython):
– Multiple processors available =>

T1 and T2 do not run in parallel!!!
– Global Interpreter Lock (GIL)

• Allows only one of P1’s threads to execute at a
time…

• As if only one processor exists

21

The Python GIL

• GIL advantages
– Simplifies Python memory management

(reference counting)
• GIL disadvantage

– As described previously…
– Multi-threaded programs can use only one

processor (at a time)
• Multiple threads cannot run in parallel

22

The Python GIL

• So, in Python…

23

Kind of
Program

Example Then use:

I/O-bound Program waits for DB
comm to complete

Thread-level
concurrency

Compute-
bound

Program performs
complex math
computation

Process-level
concurrency *

* But better not to use Python at all!

The Python GIL

• So, more generally…

24

Kind of
Pgmming

Likely
to use:

Likely to implement
concurrency via:

System-level
programming

C Multiple processes

Application-level
programming

Java Multiple threads
 For I/O-bound pgms
 For compute-bound pgms

Application-level
programming

Python Multiple threads
 For I/O-bound pgms

Agenda

• Realistic example: I/O delays
• Realistic example: compute delays
• The Python GIL
• Concurrency commentary

25

Concurrency Commentary

• Process-level concurrency is:
– Essential, esp. at system level
– Safe: concurrent processes share no data
– Slow: forking processes is relatively slow

• Thread-level concurrency is:
– Essential, esp. at application level
– Dangerous: concurrent threads can share

objects => potential race conditions, potential
deadlocks

– Fast: spawning threads is relatively fast

26

Concurrency Commentary

• Some rhetorical questions:
– Should all objects automatically be

thread-safe?
• Should all fields automatically be private and all

methods automatically be “locked”?

27

“It is astounding to me that Java’s insecure
parallelism is taken seriously by the
programming community, a quarter of a
century after the invention of monitors and
Concurrent Pascal. It has no merit.”
-- Per Brinch Hansen, 1999

Concurrency Commentary

• Some rhetorical questions (cont.):
– Should methods be “locked” by default?
– Should we use process-level concurrency

instead of thread-level concurrency
whenever possible?

– In the long run, is thread-level concurrency a
passing phase?

28

Lecture Summary

• In this lecture we covered:
– Realistic example: I/O delays
– Realistic example: compute delays
– The Python GIL
– Concurrency commentary

29

Lecture Series Summary

• In this lecture series we covered:
– How to fork and wait for processes
– How to spawn and join threads
– Race conditions and how to avoid them
– Environment variables
– Realistic examples
– The Python GIL
– Commentary

• See also:
– Appendix 1: Deadlocks

30

More Information

• The COS 333 Lectures web page
provides references to supplementary
information

Appendix 1:
Deadlocks

Deadlocks

• Problem: Deadlock
– Simplest case…
– Thread1

• Has the lock on object1
• Needs the lock on object2

– Thread2
• Has the lock on object2
• Needs the lock on object1

– Thread1 and thread2 block forever

33

Deadlocks

• See deadlock.py
– alice_acct: 0
– bob_acct: 0
– alice_to_bob_thread

• Transfer 1 from alice_acct to bob_acct, 1000
times

– bob_to_alice_thread
• Transfer 1 from bob_acct to alice_acct, 1000

times
– alice_acct: 0
– bob_acct: 0

34

Deadlocks

• See deadlock.py (cont.)

35

$ python deadlock.py
…
Alice: -26
Bob: 26
Alice: -27
Bob: 27
Alice: -28
Bob: 28
Alice: -29
Bob: 29
Alice: -30
Bob: 30

$ python deadlock.py
…
Alice: -100
Bob: 100
Alice: -101
Bob: 101
Alice: -102
Bob: 102
Alice: -103
Bob: 103
Alice: -104
Bob: 104

Deadlocks

• See deadlock.py

36

(1) start() (2) start()

(3) alice_acct.transfer_to(bob_acct, 1) (4) bob_acct.transfer_to(alice_acct, 1)

Deadlock

alice_to_bob_thread bob_to_alice_thread

alice_acct bob_acct

Two BankAcct objects:
aliceAcct, bobAcct
Two Threads:
aliceToBobThread,
bobToAliceThread

alice_to_bob_thread
 Has lock on alice_acct
 Needs lock on bob_acct

bob_to_alice_thread
 Has lock on bob_acct
 Needs lock on alice_acct

Deadlocks

• See deadlockw.py

• Uses with statement

37

Deadlocks

• Deadlock general case (circular chain):
– Thread1 has the lock on object1; needs the

lock on object2
– Thread2 has the lock on object2; needs the

lock on object3
– …
– Thread N has the lock on object N; needs the

lock on object 1

38

Deadlocks

• Solution:
– Make sure there are no circular chains!
– Give each shared resources a sequence

number
– Pact: Thread must acquire shared resources

in order by sequence number

39

Deadlocks

• See nodeadlock.py

40Works!

$ python nodeadlock.py
…
Alice: -4
Bob: 3
Alice: -3
Bob: 2
Alice: -2
Bob: 1
Alice: -1
Bob: 0
Alice: 0
Finished
$

$ python nodeadlock.py
…
Bob: -4
Alice: 3
Bob: -3
Alice: 2
Bob: -2
Alice: 1
Bob: -1
Alice: 0
Bob: 0
Finished
$

Deadlocks

• See nodeadlockw.py

• Uses with statement

41

