
Concurrent Programming
(Part 3)

Copyright © 2025 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– Thread conditions
– Environment variables

2

Agenda

• Thread conditions
• Environment variables

3

Thread Conditions

• Observation (concerning locking.py):
– Before withdrawing, withdraw thread should

wait for the bank account balance to be
sufficiently large

– After depositing, deposit thread should notify
waiting threads that they can try again

4

Thread Conditions

• Observation (in general):
– Sometimes a consumer thread must wait

for a condition on a shared object to become
true

– Sometimes a producer thread must change
the condition, and notify waiting threads that
they can try again

• Implementation: Thread conditions

5

Thread Conditions

• See conditions.py

6

$ python conditions.py
1
2
3
4
5
6
7
8
9
10
8
6
4
2
0
Final balance: 0
$

$ python conditions.py
1
2
3
4
5
3
1
2
3
4
5
6
4
2
0
Final balance: 0
$

Thread Conditions

• See conditions.py (cont.)
– condition.notify_all()

• Moves all threads waiting on this object from
waiting state to runnable state

– condition.wait()
• Releases the lock
• Moves current thread from runnable state to

waiting state
• Upon return, reacquires lock

7

Thread Conditions

• See conditionsw.py

– Uses with statement

8

Which program is better,
conditions.py or
conditionsw.py?

consumer thread
 while (! objectStateOk)
 condition.wait();
 // Do what should be done when
 // objectStateOk is true.

producer thread
 // Change objectState.
 condition.notify_all();

Thread conditions pattern:

Thread Conditions

9

Aside: Thread States

New

Runnable

Terminated

start()

run() returns

Blocked

Waiting

acquiring a lock

lock acquired

waiting for notification

notification occurred

10

Cay Horstmann.
Core Java: Volume 1

At any time OS gives processor(s) to Runnable thread(s)

Agenda

• Thread conditions
• Environment variables

11

Environment Vars
• Environment variables

– Each process has a set of environment
variables
• PATH=...
• SHELL=...
• QUERY_STRING=...
• …

– Each child process inherits the
environment variables of its parent
process

12

Environment Vars

$ export XXX=yyy
$ printenv
…
XXX=yyy
…
$ printenv XXX
yyy
$ echo $XXX
yyy
$ unset XXX
$ printenv XXX
$

In the Bash shell (on Linux or Mac):

13

Environment Vars

C:\>set XXX=yyy
C:\>echo %XXX%
yyy
C:\>set XXX=
C:\>echo %XXX%
C:\>

In a Command Prompt window (on MS
Windows):

14

Environment Vars

$ python
>>> import os
>>> os.environ['XXX'] = 'yyy'
>>> os.environ['XXX']
'yyy'
>>> os.environ['ZZZ']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<frozen os>", line 714, in
__getitem__ KeyError: 'ZZZ'
>>> os.environ.get('XXX')
'yyy'
>>> os.environ.get('ZZZ')
>>> os.environ.get('ZZZ', 'somedefault')
'somedefault'
>>> quit()
$

In Python:

15

Environment Vars
• Question:

– How can a Python process accept data
from its user?

• Answers:
– By reading it (from stdin, a file, a socket,

or a pipe)
– Through a command-line argument
– Through an environment variable

16

Environment Vars
• See envvar1.py

17

$ export GREETING=hello
$ python envvar1.py
hello
$ unset GREETING
$ python envvar1.py
hi
$

Environment Vars
• The Python dotenv module

– Python-specific mechanism for
setting/getting env vars

– To install:

18

$ python -m pip install python-dotenv

Environment Vars
• The Python dotenv module (cont.)

– To use in Python code (step 1)

19

SOMEVAR=somevalue
…

.env file:

Environment Vars
• The Python dotenv module (cont.)

– To use in Python code (step 2)

20

import dotenv
…
dotenv.load_dotenv()
SOME_VAR = os.environ.get('SOMEVAR', default)
…

.py file:

(1) Looks for SOMEVAR as env var; if not found…
(2) Looks for SOMEVAR in .env file, if not found…
(3) Uses default

Environment Vars
• See envvar2.py

21

$ export GREETING=bonjour
$ python envvar2.py
bonjour
$ unset GREETING
$ python envvar2.py
hello
$ rm .env
$ python envvar2.py
hi
$

$ cat .env
GREETING=hello
$

Then:

Created first:

Lecture Summary

• In this lecture we covered:
– Thread conditions
– Environment variables

• See also:
– Appendix 1: Inter-Process Communication
– Appendix 2: Inter-Thread Communication
– Appendix 3: Thread Conditions in Java

22

Appendix 1:
Inter-Process Communication

Inter-Process Communication

• Processes do not share objects, so…
• Inter-process comm cannot be

accomplished via a shared object…

24

Inter-Process Communication

• Pipe
– An operating system (not a Python) feature

25

Producer
Process

Consumer
Process

Inter-Process Communication

26

send recvpipe

Pipe has a finite size (determined by OS)
Producer process calls send()
Consumer process calls recv()

When should
send() block?

When should
recv() block?

Inter-Process Communication

• See prodconprocesses.py

27

$ python prodconprocesses.py
...
Produced: 95
Consumed: 95
Produced: 96
Consumed: 96
Produced: 97
Consumed: 97
Produced: 98
Consumed: 98
Produced: 99
Consumed: 99
Finished
$

Appendix 2:
Inter-Thread Communication

Inter-Thread Communication

• Threads share objects, so…
• Inter-thread comm can be accomplished

via a shared object…

29

Inter-Thread Communication

• Python Queue class
– Semi-thread-safe
– Designed for inter-thread comm

30

Inter-Thread Communication

• Use case 1:

31

…
q = queue.Queue()
…
q.put(item)
…
try:
 item = q.get(block=False)
except queue.Empty:
 # The queue is empty.

Queue
object
can contain
an unlimited
number of
items

Producer
Thread Queue

Consumer
Thread

Inter-Thread Communication

32

Producer thread calls put()
Consumer thread calls get()

get() throws exception if Queue object is empty

put get

Inter-Thread Communication

• Use case 2:

33

…
q = queue.Queue(n)
…
q.put(item)
…
item = q.get()
…

Queue
object can
contain up to
n items

ProducerThread Queue ConsumerThread

Inter-Thread Communication

34

Queue object has a finite size
 Specified by Python pgm
Producer thread calls put()
Consumer thread calls get()

put get

When should
put() wait?

When should
get() wait?

Inter-Thread Communication

• See prodconthreads.py

35

$ python prodconthreads.py
...
Produced: 97
Consumed: 93
Produced: 98
Consumed: 94
Produced: 99
Consumed: 95
Consumed: 96
Consumed: 97
Consumed: 98
Consumed: 99
Finished
$

Inter-Thread Communication

• See prodconthreads.py (cont.)
– Observation: It’s a good thing that Queue

objects are semi-thread-safe

36

Appendix 3:
Thread Conditions in Java

37

Thread Conditions in Java

• See Conditions.java

38

$ javac Conditions.java
$ java Conditions
1
2
3
4
5
6
7
8
9
10
8
6
4
2
0
Final balance: 0
$

