Concurrent Programming
(Part 2)

Copyright © 2025 by
Robert M. Dondero, Ph.D.
Princeton University



Objectives

. We will cover:
- Concurrent processes vs. concurrent threads
- Race conditions
- Preventing race conditions
- Thread safety



Agenda

. Process vs. thread concurrency
. Race conditions

. Preventing race conditions

hread safety




Process vs. Thread Concurrency

. Difference #1

- Process-level concurrency
- Multiple processes run concurrently
- Parent process forks (and waits for) a child
process
- Thread-level concurrency

- Multiple threads run concurrently within the
same process

- Within a process, parent thread spawns (and
joins) a child thread



Process vs. Thread Concurrency

. Difference #2

- Process-level concurrency
- Forking & context switching are relatively slow

- Thread-level concurrency
- Spawning & context switching are relatively fast



Process vs. Thread Concurrency

. Difference #3

- Process-level concurrency
- Concurrent processes do not share objects

- Thread-level concurrency
- Concurrent threads do share objects

. Elaboration...



Process vs. Thread Concurrency

. Process-level concurrency

- P1 and P2 do not share objects

- P1 and P2 have (initially identical but) distinct
memory address spaces



Process vs. Thread Concurrency

Concurrent Processes: Conceptually

PROCESS P1 PROCESS P2
HEAP - STACK HEAP - STACK
DATA BSS DATA BSS
RODATA TEXT RODATA TEXT

ﬂk A
IP REG IP REG




Process vs. Thread Concurrency

Concurrent Processes: In Reality

PROCESS P1 PROCESS P2
HEAP ) STACK | HEAP «— STACK
' ™ RODATA
DATA BSS DATA BSS

-

IP REG IP REG




Process vs. Thread Concurrency

. See processsharing.py

10



Process vs. Thread Concurrency

. Thread-level concurrency

- T1 and T2 share objects
- T1 and T2 have distinct STACK sections

- T1 and T2 share the RODATA, DATA, BSS, and
HEAP sections

11



Process vs. Thread Concurrency

Concurrent Threads

THREAD T1 THREAD T2

HEAP

DATA

STACK <

IP REG

% STACK

IP REG

BSS

RODATA

TN
N2/

TEXT




Process vs. Thread Concurrency

. See threadsharing.py

13



Agenda

. Process vs. thread concurrency
. Race conditions

. Preventing race conditions
hread safety

14



Race Conditions

. Problem:
- Threads can share objects

- Danger if multiple threads update/access the
same object concurrently

- Race condition
- Qutcome depends upon thread scheduling

15



Race Conditions

. See race.py

Run the program multiple
times. Are there
inconsistencies in the
output across runs?

16



Race Conditions

. See race.py (cont.)

S python race.py
1

2

3

4

5

6

7

8

9

10

8

6

4

2

0

Final balance: 0
$

python race.py

S
1
2
3
4

Final balance: 10

S

python race.py

O N B> Oy OO JdJoy U i WDN B U
O

I
N

Final balance: -2

S

17



Race Conditions

. Note:

- Use of shared BankAcct object by multiple
threads causes unpredictable behavior

- race.py contains a race condition

18



Agenda

. Process vs. thread concurrency
. Race conditions

. Preventing race conditions
hread safety

19



Preventing Race Conditions

. Observation:

- While a thread is executing deposit () or

withdraw () on a particular bank acct
object...

-~ No other thread should be able to execute
deposit () orwithdraw () on that
bank acct object

20



Preventing Race Conditions

. Solution: Locking

- Each object has an associated lock
- Current thread acquires lock on X

. Other threads cannot acquire lock on X until
current thread releases lock on X

- (Adds lots of overhead)

21



Preventing Race Conditions

. See_locking.py (cont.)

Run the program
multiple times. Are there
inconsistencies in the

final balance across
runs?

22



Preventing Race Conditions

. See_locking.py (cont.)

@)

i

vr i O N D O 0 W o0 J o U W IN P U

python locking.py

nal balance: O

S
1
2
3

Fi
$

python locking.py

nal balance: 0

23



Preventing Race Conditions

. See_locking.py (cont.)

What will happen if we
“forget” to release the
lock in the deposit ()
method?

24



Preventing Race Conditions

. See lockingw.py

- Uses with statement

Which program is better,
locking.py or lockingw.py?
Why?

25



Agenda

. Process vs. thread concurrency

. Race conditions

. Preventing race conditions
. Thread safety

26



Thread Safety

. Recall locking.py

- A context switch can occur between any 2
machine lang instructions

- Implications:
- The get balance () method should be
protected by locking

- The balance field should be private
— But cannot be

27



Thread Safety

. Thread safety
- Oversimplification...

- An object is thread-safe if all of its methods
are “locked” & all of its fields are private

28



Thread Safety

. Java

- Methods can be locked (synchronized)
- Fields can be private
- Objects can be thread-safe

. Python
_ Methods can be locked

- Fields cannot be private

- Any object that has fields cannot be
thread-safe

29



Aside: Other Languages

Concurrency REGERE! Yes, via Yes, via
\ERL i 1(-9 standard standard standard
processes? RllJg:1aY library library

Concurrency RGERE! Yes, via Yes, via
ERy LI standard language pthread
threads? library and standard | library
library *

* See Appendix 1



Lecture Summary

. In this lecture we covered:

- Concurrent processes vs. concurrent threads
- Race conditions

- Preventing race conditions

- Thread safety

. See also:

- Appendix 1: Multithreaded programming in
Java

31



Appendix 1;
Multi- Threaded Programming In
Java



Multithreaded Pgmming in Java

. See Spawhning.java
. See Joining.java

. See Race.java

. See Locking.java

33



