COS 330: Great Ideas in Theoretical Computer Science Fall 2025

COS 330: Great Ideas in Theoretical
Computer Science

Fall 2025

Problem Set 6
Module: New Models of Computation

Below is a reminder of key aspects of the PSet:

e The only goal of this PSet is to help you develop your problem-solving skills in preparation
for the exams. Your performance on this PSet will not directly contribute to your grade, but
will indirectly improve your ability to do well on the exams.

e Because your performance does not directly impact your grade, you may use any resources
you like (collaboration, Al, etc.) to help you complete the PSet.

o We strongly suggest taking a serious stab at the PSet alone, to help self-evaluate where you’re
at. But, we also suggest collaborating with friends, visiting office hours, asking on Ed, and/or
using Al tools to help when stuck. Even when able to complete the entire PSet on your own,
you may still find any of these methods useful to discuss the PSet afterwards.

e Throughout the PSet, we’ve included some general tips to help put these into broader context.
Exams will not have these, and future PSets may have fewer.

o We strongly suggest treating this like any other PSet, and writing up your solutions as if
you were handing them in for a grade. At minimum, we very strongly suggest writing up
sufficiently many solutions to discuss with your Coach.

Aligning Expectations

Recall that the B symbol implies that the following problem is an “exam-style” problem
We highly recommend that you write-up a full solution to this problem.

Problem 1 : Online Degree-Bounded Edge Selection

In this problem, you are given a fixed vertex set V' with |V| = n. Edges in E arrive one by one in
an online fashion: ey, ey, ..., where e, = {us,v;} C V. When edge e; arrives, you must immediately
and irrevocably decide whether to accept or reject itEI

!To be extra clear, the game proceeds as follows. You know V, and therefore know |V| = n. You do not know
anything about E, and you do not know |E|. Then, you see e1 = (u1,v1), and must decide whether to accept or
reject e; (and this decision is final forever). Only after making your decision, then you will see ea = (u2,v2), and
must decide whether to accept or reject ea.

COS 330: Great Ideas in Theoretical Computer Science Fall 20:

ND
ot

Constraints. At all times, for all v € V, the set of accepted edges must not have more than two
edges adjacent to v. Specifically, let Earc denote the set of all accepted edges. degp, | . (v) denotes
the number of edges in Farq that are adjacent to v. Your algorithm must maintain:

degpg,,,(v) <2 foralveV.

Objective. Maximize the number of accepted edges. That is, maximize |Farg]|.

Throughout this problem, we’ll let EopT be an optimal offline solution: a maximum-size set of
edges in F such that every vertex has degree at most 2.

Finally, this problem will consider the following greedy algorithm: when edge e; = {uy, v¢}
arrives, accept it if and only if

degp,, (u) <1 and degg,, . (v;) < 1.

Otherwise, reject it. That is, accept edge e if and only if it is feasible to add e to the current Farc
without violating the constraints.

(a) Show that the greedy algorithm is maximal: there does not exist any e € E such that it is
feasible to add e to the final set Ear,g. That is, prove that for every edge e = {u,v} ¢ Farg, at
least one of u or v has degree exactly 2 in the final set Earq.

(b) Let Full(Earg) denote the nodes in V' with degree exactly 2 in Earg. Prove that |Earg| >
|[Full(Earg)|-

(c) Prove that the number of edges in Egpr that the greedy algorithm rejects is at most 2 -
‘Full(EAL(;)‘. That is, prove that |EOPT \EALG| <2- ’Fuﬂ(EALgﬂ.

(d) Prove that the greedy algorithm is 3-competitive. That is, prove:

1
|EaLc| > g‘EOPT‘-

(e) Prove that no deterministic online algorithm can always achieve a competitive ratio of 1.
That is, for every deterministic online algorithm, design an instance where that algorithm does
strictly worse than |Eopr|.

Problem 2 : Streaming with Multi Passes

Consider a stream of n elements ay, as, ..., a,, where each element a; € {0, 1}Z (i.e., each element
is an ¢-bit string)ﬂ The most frequent element (MFE) is an element that appears most often in
the stream. For example, if n = 7, £ = 2, and the stream is 00,01, 10,00, 11, 00,01, then the MFE
is 00 (which appears 3 times).

You process the stream in passes: in each pass, you see the elements in order aj, as, ..., a,, and
can maintain any memory between passes. Your goal is to compute the MFE using as few passes
and as little memory as possible.

2For simplicity, you can assume that 2¢ > n, say 2¢ > n%.

COS 330: Great Ideas in Theoretical Computer Science Fall 2025

(a) Design an algorithm that computes the MFE in one pass using O(nf) bits of memory.

(b) Design an algorithm that computes the MFE using O(¢) bits of memory and O(2¢) passes
through the stream.

(c¢) Design an algorithm that computes the MFE using O (% . é) bits of memory and 2p passes
through the stream, for any parameter p with 1 < p < n. You may assume you have access to a
hash function A that maps each ¢-bit string to elements in {1,2, ..., p} uniformly, or in other words
for any 41,12 € {1,2,...,p} we have |[{z: h(z) = i1 }| = |{z : h(z) = i2}|.

(Hint: Use the hash function to partition elements into p groups of about n/p elements each.)

