COS 330: Great Ideas in Theoretical Computer Science Fall 2025

COS 330: Great Ideas in Theoretical
Computer Science

Fall 2025
Problem Set 3

Module: Randomization

Below is a reminder of key aspects of the PSet:

e The only goal of this PSet is to help you develop your problem-solving skills in preparation
for the exams. Your performance on this PSet will not directly contribute to your grade, but
will indirectly improve your ability to do well on the exams.

e Because your performance does not directly impact your grade, you may use any resources
you like (collaboration, Al, etc.) to help you complete the PSet.

o We suggest taking a serious stab at the PSet alone, to help self-evaluate where you’re at. But,
we also suggest collaborating with friends, visiting office hours, asking on Ed, and/or using
AT tools to help when stuck. Even when able to complete the entire PSet on your own, you
may still find any of these methods useful to discuss the PSet afterwards.

e Throughout the PSet, we’ve included some general tips to help put these into broader context.
Exams will not have these, and future PSets may have fewer.

Aligning Expectations

At the end of this PSet we’ve included an appendix with some common inequalities and bounds
that you may find useful. We don’t expect you to memorize these, so we will provide a similar
appendix on the exam.

However, note that as you work on the problems, you should try to develop intuition for
when and how to apply these inequalities. In particular, you should learn to recognize the
main differences between the inequalities (e.g., Chernoff is stronger than Markov, but requires
independence and boundedness). When solving a problem, you should be able to identify
which inequality is most appropriate to apply, and use the appendix as a reference for the
exact statement. See this Ed post| for advice on how to think about and use these inequalities.

Problem Solving Tips

Don’t assume the problems are sorted by difficulty. If you get stuck on a problem, try a
different one and come back later. If you get stuck on a subproblem, try a different subproblem
or problem and come back later (on subproblems that say “use the result from part (a)”, you

https://edstem.org/us/courses/83681/discussion/7000250

COS 330: Great Ideas in Theoretical Computer Science Fall 2025

can assume the result from part (a) even if you didn’t solve it).

If after spending 30 minutes on a problem you feel like you're not making any progress,
consider asking for help. Ask questions on Ed, go to office hours, or feel free to ask Al for hints
or explanations. However, avoid giving up too quickly. The more time you spend struggling
with a problem, the more you will learn from it. Make sure you give a problem at least 30
minutes of 100% focused effort before asking for help, but treat this as a lower bound, not as
an “always ask for help after 30 minutes”.

Problem 1 : Is Quicksort Quick?

Recall the Quicksort algorithm you’ve learned in the past, with the pivot element chosen uniformly
at random from the array. Here is a brief description of the algorithm:

e Pick a pivot element uniformly at random from the array.

e Partition the remaining elements into two subarrays: those less than the pivot and those
greater than or equal to the pivot.

e Recursively apply Quicksort to both subarrays.

e Concatenate the sorted left subarray, the pivot, and the sorted right subarray to form the
final sorted array.

e Repeat until the base case of a single element or empty array is reached.

Let’s analyze the expected number of comparisons this randomized Quicksort algorithm makes
when sorting an array of n distinct elements. Let ai,as,...,a, be the elements of the array, and
51 < 89 < ... < sp be the sorted order of these elements. Define the indicator random variable
X;jfor 1 <i<j<naslifs; and s; are compared during the execution of the algorithm, and 0
otherwise.

(a) Determine the expected value E[X ;] for 1 <i < j <n.

(b) Using the result from part (a), show that the expected total number of comparisons made by
the randomized Quicksort algorithm is at most 2nInn (note that In is the natural logarithm).

(c) Show that with probability at least 4/5, the number of comparisons made by the randomized
Quicksort algorithm is at most 10n Inn.

Problem 2 : A Load Off

Consider n servers that need to handle n incoming requests (e.g., queries to an LLM server). Each
request is assigned to a server uniformly at random and independently of other requests. We want
to analyze the load on the servers, where the load on a server is defined as the number of requests
assigned to it.

(a) What is the expected load on each server?

(b) Show that the expected number of servers with a load of exactly 2 is ~ n/(2e).

COS 330: Great Ideas in Theoretical Computer Science Fall 2025

(c¢) Show that the probability that any server has a load of more than 2Inn is at most 1/n.

Problem 3 : Learning to Learn

Consider a probability distribution over the set {1,2,...,n} which is described by a vector p =
(p1,p2,---,Pn), where p; is the probability of sampling the element i. This probability distribution
is unknown to you and your goal is to find an approximation p = (p1, P2, . - ., Pn) such that the two
distributions are close in the following metric: Y ;" | [pi — pi| <

(a) Show that if p and p are close according to the metric above, then for any function f :
{1,2,...,n} — [0, 1], the expected values of f under the two distributions are also close, i.e.,

|Einp[f ()] — Eseplf(9)]] < e

Note that the above is one way of justifying why we care about approximating the distribution
p in this metric.

(b) Suppose you independently sample m times from the p distribution, obtaining samples

{zj=i}|

T1,%2,...,Tm. Let p be the empirical distribution, where p; = is the fraction of samples

that equals to 1.
2
Show that if m > Q (%(2”/6)), then with probability at least 1 — d, the empirical distribution

p satisfies
> pi—pil <e
1<i<n

Problem 4 : Tiny Counting

Consider the task of maintaining a counter, which is initially 0. The counter supports two opera-
tions:

e increment(): Increases the value of the counter by 1.
e get(): Returns the current value of the counter.

A simple way to implement this counter is to use a single integer variable to store the current value
of the counter. This needs [logy(m + 1)] bits to count up to m. Here is an alternative way:

e Let X be a variable which is initially 0.

e Implement increment() as follows: with probability 1/2X , increase X by 1, otherwise, do
nothing.

e Implement get() as follows: return 2% — 1.

L This metric is very close to a common metric called total variation distance, which is defined as % > e — il
The factor of 1/2 is included for technical reasons, for example, it ensures that the distance lies between 0 and 1.

ND
ot

COS 330: Great Ideas in Theoretical Computer Science Fall 20:

(a) Show that after m calls to increment(), the expected value returned by get() is m and its
variance is at most 2m? + 1.

(Hint 1: Use induction on the number of calls to increment() to prove both the expectation
and variance bounds.)

(Hint 2: Define P, to be the probability that after m calls to increment(), the value of X is
k, and use it to compute the expectation and variance. Write a recurrence relation for P, ; and
use it in the induction proof.)

Note that the above implies that the expected number of bits used by this counter after m calls
to increment() is O(loglogm).

(b) Show that after m calls to increment(), the value returned by get() is within [m—em, m+em]
with probability at least 1 — E%

Appendix

Union Bound. For any events A1, As, ..., Ay,

(04) < S

Markov’s Inequality. Let X be a non-negative random variable. Then, for any a > 0,

E[X]

P(X >a) <
a

Chebyshev’s Inequality. Let X be a random variable with mean p and variance o?. Then, for
any k > 0,

1
P(X —pl 2 ko) < 5.

Chernoff Bound Let X7, Xo,..., X, be independent random variables such that 0 < X; <1 for
all i. Let X =" | X; and let p = E[X]. Then for any ¢ > 0,

t2
Pr(X > pu+t] <exp <_2M+t> .

and

12
PriX <p—t] <exp (—2> .
@

Two-Sided Chernoff Bound Let X7, Xo,..., X, be independent random variables such that
0<X,<1foralli Let X =73 ",X;and let 4 =E[X]. Then for any ¢ > 0,

t2
PrIX — | > 1] < 2exp (—) .
3

