
COS 330: Great Ideas in Theoretical
Computer Science

Fall 2025
Precept 8

My stream of consciousness

Practice

Problem 1: Ski Rental with Randomization

Recall the ski rental problem from lecture. You are planning a ski trip but don’t know in advance
how many days d you will ski. Each morning, you must decide whether to rent skis or buy skis:

• Renting costs $1 per day (note that in lecture we used $R, but here we set R = 1)

• Buying costs $B (one-time purchase)

Once you buy skis, you own them and incur no further costs. Once you stop skiing, the trip ends
and the problem terminates.

Let d ≥ 1 denote the (unknown) total number of days you ski. An optimal offline algorithm knows
d in advance and achieves cost:

OPT(d) = min(d,B)

For an online algorithm A, let A(d) denote its cost when the trip lasts d days. Recall from lecture
that a deterministic online algorithm A is α-competitive if:

max
d≥1

A(d)

OPT(d)
≤ α

(a) Recall the Better-Late-Than-Never deterministic algorithm from lecture:

• Rent for days 1, 2, . . . , B − 1

• On day B (if you’re still skiing): Buy for $B

Compute the competitive ratio of Better-Late-Than-Never.

(We did this in class, so if you remember the calculation well, feel free to skip writing it out again!)

1

We also saw in lecture that no deterministic online algorithm can achieve a competitive ratio better
than 2. So let’s turn to randomization to find an algorithm that beats this bound.

For a randomized online algorithm A, we say A is α-competitive in expectation if:

max
d≥1

E[A(d)]
OPT(d)

≤ α

where the expectation is over the algorithm’s random choices.

(b) Assume B is an even integer. Consider the following randomized algorithm Hp (the “hedging”
algorithm) parameterized by some probability p ∈ [0, 1]:

• Rent for days 1, 2, . . . , B/2− 1

• On day B/2 (if you’re still skiing): Buy with probability p, otherwise continue renting

• On day B (if you’re still skiing and haven’t bought yet): Buy for $B

Compute E[Hp(d)] for all values of d.

Hint: Your answer should be a piecewise function depending on whether d < B/2, d ∈ [B/2, B),
or d ≥ B.

2

(c) Find a value of p ∈ [0, 1] such that algorithm Hp achieves a competitive ratio strictly less than
2. Prove that your choice of p achieves this ratio.

Hint: The competitive ratio is maxd
E[Hp(d)]

OPT(d) . Analyze each case from part (b) separately, then
choose p to balance the worst-case ratios.

3

You can take the above approach and generalize it to get even better competitive ratios by adding
more randomized buying points between days 1 and B. If you do so and optimize the probabilities,
you can get arbitrarily close to the optimal competitive ratio of e/(e− 1) ≈ 1.582.

However, the analysis becomes more complex as you add more randomization steps. If you’re
curious to see the full analysis, here is a good reference. In case you are still not convinced that
linear programming is really useful, the analysis of the optimal randomized ski rental algorithm
can be formulated as a linear program!

Problem 2: Uniform Sampling from a Stream

Consider a stream of n elements a1, a2, . . . , an arriving one at a time. You do not know n in
advance. Your goal is to output a uniformly random element from the stream. That is, after seeing
all n elements, you must output an element such that each ai has probability exactly 1/n of being
selected.

Constraints:

• You see elements one at a time: a1, a2, . . . , an

• You don’t know n (the total number of elements) until you’ve seen them all

• You can only make one pass through the stream

• You must use O(1) memory (i.e., constant space, independent of n)

(a) Consider the following algorithm that satisfies the above constraints:

• Initialize s← a1 (store the first element)

• For i = 2, 3, . . . (while elements arrive):

– When element ai arrives, replace s with ai with probability 1/i

• Output s

Prove that after seeing the first k elements, each element aj (for j ≤ k) has probability exactly 1/k
of being stored in s.

4

https://cs.brown.edu/~claire/Talks/skirental.pdf

	Practice

