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Instead of introducing an extension to the lecture, today we are going to review the duality concepts
from lecture in more depth. It’s a very powerful tool, but it’s not always intuitive at first glance, so
it will be helpful to look at it again.

Duality is all about finding upper bounds (for maximization problems) or lower bounds (for mini-
mization problems) on the optimal value of a linear program. The key idea is that any valid linear
combination of the constraints of a linear program gives a valid bound on the objective function.

So let’s say we have a maximization linear program (LP) that looks like the following:
Maximize: Z CiT;

Subject to: ZAjiﬂii <b; Vj

Our goal is to take linear combinations of the constraints to get an upper bound on the objective
function ) _, ¢;z;. Here’s the four-step “recipe” for doing this:

Step 1: Create dual variables. For each constraint in the primal LP, create a dual variable w;.
These variables represent the “weights” we’ll use to combine the constraints.

Step 2: Ensure validity. When we take a linear combination of the primal constraints using

weights w;, we get:
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For this combination to remain valid we need w; > 0 (otherwise multiplying by a negative weight
would flip the inequality). These conditions on w; become the validity constraints in the dual.

Step 3: Ensure usefulness. We want the best upper bound on the objective possible, so we need
the combined constraints to actually bound the objective function:
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Above we swapped the order of the sums and rearranged the terms accordingly. By doing so, we
can observe that we just need ¢; < > ; w;Aj; (the coefficient of z; on the right must dominate the
left) to satisfy this for all 7.



These conditions become the usefulness constraints in the dual.

Step 4: Optimize the bound. We now have:
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To get the tightest possible upper bound, we minimize ) ; w;b; over all valid choices of w;. This
becomes the dual LP! For completeness, here is the final dual LP:

Minimize: Z w;b;
J

Subject to: ijAji >c¢ Vi
J

One important note that we slightly glossed over in lecture and above is that the steps we performed
only work for a primal LP in the specific form given above (which is known as standard form).
For example, if x; were unconstrained (could be negative), then we can still perform similar steps,
but the validity and usefulness constraints would be slightly different.

Example: From Matching LP to Vertex Cover LP

In lecture, we saw how to derive the dual of the matching P for bipartite graphs, so let’s revisit
that example in detail using the four-step process above.

First, recall the problems. Consider a bipartite graph G = (L U R, E') where L and R are the two
parts of the bipartition. A matching is a set of edges with no shared endpoints, and a vertex cover is
a set of vertices touching all edges. The maximum matching problem seeks the largest matching,
while the minimum vertex cover problem seeks the smallest vertex cover.

Recall the LP relaxation for maximum matching:
Maximize: Z Te
eclk
Subject to: Z z.<1 Yve LUR

e incident to v

z.>0 Vee E

The z. represents whether edge e is in the matching, and the constraints ensure that each vertex is
matched to at most one edge.

Note that the above is in the primal maximization form we discussed earlier, so we can apply the
four-step process directly. Let’s derive the dual step by step using the key principles:

Step 1: Create dual variables. For each constraint in the primal (one per vertex v € L U R), we
create a dual variable w,. These will be the variables in our dual LP.

Step 2: Set up validity constraints. We take a linear combination of the primal constraints using

weights w,:
Z wv< Z xe>§ Z wy - 1

veLUR e incident to v veLUR
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We need w, > 0 for all vertices v to ensure this combination remains valid. This gives us the
validity constraints: w, > 0forallv € LU R.

Step 3: Set up usefulness constraints. We can rewrite the left side by swapping the order of

summation:
dowe| D wm) =3 D ww

veELUR e incident to v e€FE \w incident to e

It’s a bit subtle, but note how “e incident to v”” becomes “v incident to e” when we swap the sums,
and we go from summing over vertices to summing over edges. For this to be useful as an upper
bound on the primal objective ) ., x., we need:

zxegz< 5 w)

eelk ecE \wv incident to e

Since each primal variable satisfies x. > 0, this holds when:

1< Z w, Ye€eE

v incident to e

For an edge e = (u, v) with endpoints « and v, this becomes:
wy +w, >1 Ve=(uv)€F

These are the usefulness constraints.

Step 4: Minimize to get the tightest bound. Putting it all together, we have:

zxegz< 5 wv)xeg S

ecE e€FE \w incident to e veLUR

To get the tightest upper bound on the primal objective, we minimize the right-hand side over all
valid choices of w,,.

Thus, the resulting LP is:

Minimize: Z W,y
vELUR

Subjectto:  w, +w, >1 Ve= (u,v) € £
w, >0 Yve LUR

Notice that this is exactly the LP relaxation for the minimum vertex cover problem! The dual
variable w, indicates whether vertex v is in the cover, and the constraints ensure every edge is
covered.

In lecture, we then used strong duality to show that the optimal value of maximum matching is
upper bounded by the optimal value of minimum vertex cover, but we’ll stop here for today since
our focus was on deriving the dual itself (you can revisit that part in the lecture notes if needed).



Practice

Problem 1

In the Learn section, we saw how to take the dual of an LP in the standard maximization form
(maximize subject to < constraints with x; > 0). However, not all LPs come in this form. In this
problem, you’ll practice converting LPs to standard form.

For each of the following LPs, rewrite it in an equivalent form that matches the standard maximiza-
tion form from the Learn section. You may need to introduce new variables or modify constraints.
(a) Minimization objective:

Minimize: 2x; + 329
Subjectto: x1+ x5 <5

z1,22 >0

(b) Greater-than-or-equal constraints:

Maximize: z; + 2x9
Subjectto: 2xy + 29 >4
T+ 31‘2 Z 6

1,22 >0




(c) Equality constraints:

Maximize: 3x; + X9
Subjectto: x; + x5 =5
21}1 + X9 S 8

1,72 > 0

(d) Unconstrained variables:

Maximize: 2z + x2
Subjectto: x1 + x5 < 4
r1 >0, 2o unconstrained




In lecture, we saw that taking the dual of the dual gives you back the primal. In this problem, you’ll
prove this fact by adapting the four-step framework to work with minimization problems.

Consider the following primal LP in standard form:

Maximize: Z CiT; P)
Subject to: ZAjiSUi <b; Vj

Recall from the Learn section that the dual of this LP is:
Minimize: Z w;b; (D)
J

Subject to: Z ’LU]'A]'Z‘ Z C; Vi
J
w; >0 Vj

Show that the dual of the dual (D) is the primal (P).

Hint: It might be tempting to first convert (D) to standard maximization form and then take the dual
like in the Learn section, but this ends up being more complicated than necessary. Instead, directly
apply the four-step framework from the Learn section, but adapt the direction of inequalities and
the objective for minimization (it should be very similar to the Learn section, just with flipped
inequalities).
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