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We spent a lot of time in class discussing a very specific type of inequalities for the probability that
a random variable deviates from its expectation. We are looking for inequalities that look like:

Pr[|X — E[X]| > ] < something small.

These inequalities are called concentration inequalities because they describe how tightly a random
variable is concentrated around its expectation. We care about them because they help us quantify
uncertainty, by establishing confidence intervals on estimates derived from random samples. For
example, we can prove that algorithms will perform reliably except with some small probability.

The most basic concentration inequality is Markov’s inequality, which applies to any non-negative
random variable.

Theorem 1 (Markov’s Inequality). Let X be a non-negative random variable. Then for any ¢ > 0,

EIX
Pr[X > 1] < %
Proof. Let 1[X > t] be the indicator random variable that is 1 if X > ¢, and 0 otherwise. Define

1[X < t] similarly. Then we can write X as:
X=X -1X<t]+X-1[X >
Now take expectations of both sides:
E[X]=E[X-1[X <t]]+E[X-1[X >{]] > E[X-1[X > {]] > t-E[1[X > t]] =t -Pr[X > ],

where the first inequality follows because X - 1[X < t] > 0 (recall that X is non-negative), and
the second inequality follows because X - 1[X > ¢] > ¢ - 1[X > t] (because if X > ¢, then X is
at least t). Rearranging gives the desired result. 0

This is the best possible inequality we can use if all we know about X is its expectation. However,
it is often too weak to be useful. In addition to the expectation, it often the case that we also know
the variance of X. The Chebyshev inequality uses this additional information to give a tighter
bound.

Theorem 2 (Chebyshev’s Inequality). Let X be a random variable with expectation ;4 and variance

o2. Then for any t > 0,

02

Pr{lX —puf 2] < -5



Proof. Apply Markov’s inequality to the non-negative random variable (X — p)?:

Pr{X — > ] = Pri(X —p? > 1 < SO W] o

]

It might not be immediately clear why Chebyshev’s inequality is stronger than Markov’s, so let’s
look at an example. Suppose X is a random variable that describes the number of heads in n fair
coin flips. Then E[X| = n/2 and Var(X) = n/4 (see lecture notes). Suppose we want to bound
the probability that X deviates from its expectation by more than n /4. Markov’s inequality gives:

E[X] n/2 2

PriX 2 n/2+n/4] < n/2+n/d n/2+njd 3

Chebyshev’s inequality gives:

Var(X) n/4 4

Pr{|X —n/2| > n/4] < = —_—

r(| n/2| > n/4] < (n/4)? ~ n2/16  n
For large n, this is much smaller than 2/3. Thus, Chebyshev’s inequality gives a much tighter
bound on the probability of deviation from the mean. But is this the full story? Can we get a

tighter bound still? The answer is yes, if we know more about the random variable.

If you stare at the proof of Chebyshev’s inequality, you will see that it essentially reduces the
problem to applying Markov’s inequality to the random variable (X — )%, What if we applied the
same idea, but to a different function of X ? Let’s try to do this for some 2k-th power of X — p!.

Theorem 3 (2k-th Moment Inequality). Let X be a random variable with expectation x. Then for
any ¢t > 0 and any integer k£ > 1,

E[(X — %]

PrX —pf 2 ] < Lo

Proof. Apply Markov’s inequality to the non-negative random variable (X — p)2*:

E[(X — p)*]

PI|X — | > 1] = Pr[(X — ) > #4] < ==

]

In our example of the number of heads in n fair coin flips, we can compute the 2k-th moment of
X — p as follows:

E[(X — )2 =S (i —n/2)% PrX =i] =S (i —n/2% (") (1/2)"
[(X = p)™] ;(l n/2)" - Pr[X =] ;(Z n/2)7- ) (1/2)
This is a bit messy, but it can be shown that E[(X — u)?*] < (k*n)* by doing some calculations
and approximations®. Plugging this into the 2k-th moment inequality gives:

"Note that we are using an even power, so that (X — 1)2" is non-negative regardless of the value of X — . This
is important because Markov’s inequality only applies to non-negative random variables, and we are assuming that X
can take any real value.

2You can obtain this using only Stirling’s approximation, which says that m! ~ v/27wm(m/e)™.
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For large enough n, this is much smaller than the Chebyshev bound of 4/n, for any constant k we
get a probability that decreases with the k-th power of n. In fact, you can try to pick the best k to
optimize the bound; if you pick k = y/n/4e, you get a bound of

Pr[|X — n/2| > n/4] < <%k;2>k - (W) vn/de B (l) Vn/de _ e

n e?

The above is even better, this is an exponentially small probability in \/n. However, we can do
even better. We can go beyond polynomial functions of X — p and use any function we want. A
particularly useful choice is the exponential function. This gives us the Chernoff bound.

Theorem 4 (Chernoff Bound 1). Let X, X5, ..., X, be independent Bernoulli random variables
with parameters p;, or equivalently, random variables whose value is 1 with probability p; and 0
with probability 1 — p;. Let X = > | X, and let = E[X]. Then for any ¢ > 0,

t2
Pr[X > p+1t] <exp <_2M+t) :

Proof. The idea is the same as before, but we apply Markov’s inequality to the non-negative ran-
dom variable e*X, for some A > 0 to be chosen later. We have:

&=

(]

_ AX A(pt)
PHX > 1] = Prle? > 0] < SE

Now we need to compute E[e**]. Since X = """ | X; and the X; are independent, we have:

n

11 X] = [1Ee

=1

E[e™] =E [* T %] —E

where the last equality follows from the independence of the X;. Now, since X; is a Bernoulli
random variable with parameter p;, we have:

E[e/\xi} — pie/\ 4 (1 _pz) -1 +pi<€)\ - 1) S epi(e)‘,l)’

where the last inequality follows from the fact that 1 + x < e* for all z. Thus, we have:
E[e*] < H P 1) — (D) pi (&= Du
i=1

Plugging this back into our bound gives:

(*=1)u

Pr[X > p+t] < ‘ Aptt) e D= Alutt)
e

Now we need to choose A to minimize the right-hand side. Some simple calculus shows that the
optimal choice is A = In(1 + ¢/u). Plugging this in gives:

Pr[X > p+1t] < et (p ) In(1+t/p)

Finally, we can use the inequality In(1 + z) > 1+9:T/2 for z > 0 to get:

+2

PrX >p+t < O T = o



Why did we pick the exponential function? Notice that in the proof, the bulk of the work was in

computing E[e*X]. This quantity is also called the moment generating function of X, because it

generates all the moments of X. You can see this by looking at the Taylor series expansion of
(AX)?

M =1+NX + (’\QL,)z + =57 +.... Soin a way, we are applying the 2k-th moment inequality

with all moments at once.

Now let’s get back to our coin flip example. In the setting of the above theorem, we have n
independent Bernoulli random variables with parameter p = 1/2, so u = n/2. If we want to
bound the probability that X deviates from its expectation by more than n /4, we can set t = n/4
in the above theorem to get:

(n/4)? n?/16

This is yet an improvement over the 2k-th moment bound, giving an exponentially small probabil-
ity in n.

To close out this section, let’s ask one last question: does the Chernoff bound only apply in the
above setting? Note that in our proof, we only used the fact that the X; are independent and that
we could bound their moment generating functions. So, as long as we have independent random
variables whose moment generating functions we can bound, we can get a Chernoff bound like the
above. For example, we can get a similar bound for sums of independent random variables that are
bounded in [0, 1], which you can prove by an almost identical argument. We can also get a similar
bound for the probability that X is smaller than its expectation by more than ¢, so Pr[X > u — t].

So here is the most general form of the Chernoff bound that we will state.

Theorem 5 (Chernoff Bound). Let X5, X, ..., X, be independent random variables such that
0<X; <1foralli.LetX =3 " X;and let u = E[X]. Then for any ¢ > 0,

t2
Pr| X > t < — .
r| _u—i—]_exp( 2M+t)

and

t2
PriX < pu—t] <exp (—2—) :
i

Combining the two above inequalities, we get a two-sided bound:

Theorem 6 (Two-Sided Chernoff Bound). Let X7, X5, ..., X,, be independent random variables
such that 0 < X; < 1foralli. Let X = Z?’:l X; and let 4 = E[X]. Then for any ¢ > 0,

t2
Pr{| X — >t <2 — .
X = 2 < exp( ?w)

Consider the following model of a random graph, known as the Erd6s-Rényi model G(n,p). A
graph G sampled from G(n,p) has n vertices, and each pair of vertices is connected by an edge
with probability p, independently of all other pairs.
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(a) What is the expected degree of a vertex in a graph sampled from G(n, p)?

(b) Show that if p = 29122 then with probability at least 1 — 2n~%/3, every vertex in a graph

sampled from G(n, p) has degree between 450 Inn and 550 In n.

Challenge

Problem 1

Suppose there is some algorithm A that given a decision task, outputs the correct answer with
probability 1/2 + ¢, for some ¢ > 0 (so this algorithm is just slightly better than random guessing).
We want to boost the accuracy of this algorithm to be at least 1 — 4, for some ¢ € (0,1). So, we run
the algorithm 7 times independently and take the majority answer as the final answer. How large
does n need to be to achieve this accuracy?
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