
COS 330: Great Ideas in Theoretical
Computer Science

Fall 2025
Precept 2

My Dynamic Precept

Learn
Let’s recall the Longest Increasing Subsequence (LIS) problem from class. We are given a se-
quence of integers a1, a2, . . . , an and we want to find the longest increasing subsequence. An
increasing subsequence is a sequence that can be derived from the original sequence by delet-
ing some elements without changing the order of the remaining elements, such that each element
in the subsequence is less than the next one. Another way to define is to say that an increasing
subsequence is given by a set of indices i1 < i2 < . . . < ik such that ai1 < ai2 < . . . < aik .

Here is an example with n = 8, with its unique longest increasing subsequence highlighted (not
all sequences have a single unique LIS):

4

1

7

2

2

3

8

4

3

5

9

6

1

7

10

8

We saw one way to solve this problem in O(n2) time using dynamic programming. We defined

Li = length of the longest increasing subsequence ending at index i.

For the above instance this gives L = [1, 2, 1, 3, 2, 4, 1, 5]. We can compute Li by using the follow-
ing recurrence:

Li = 1 + max
j<i,aj<ai

Lj,

with the base case L1 = 1. Translating the above recurrence to English, we say that the longest
increasing subsequence ending at index i is given by taking the longest increasing subsequence
ending at some index j < i where aj < ai (so that we can append ai to the subsequence ending at
j) and adding 1 to account for ai. If there is no such j, then we just have the subsequence of length
1 containing only ai. The answer to the problem is then maxi Li.

Note that in the definition of Li we force it to include ai. This is critical otherwise we would
not be able to know how to extend the subsequence. Forcing an element to be included in a
dynamic programming state is a common trick in dynamic programming problems where the
order of elements matters in some way.

A consequence of this is that the last state isn’t necessarily the optimal one, since the optimal
subsequence might not include the last element of the array. So the answer isn’t simply Ln but

1



rather maxi Li.

A quick analysis of the above algorithm shows that it runs in O(n2) time since we have n states
and each state takes O(n) time to compute. But can we do better?

Let’s define some slightly different dynamic programming states:

M i
k = the minimum possible last element of an increasing subsequence of length k using the first i elements.

At first glance this definition might seem odd, after all it defines n2 states, which is worse than the
n states we had before, but we will make some observations that will help us be more efficient.

First note that M i = [−∞, ai,∞, . . . ,∞], where we use ∞ to denote that there is no increasing
subsequence of that length using, and −∞ to denote that there is a trivial increasing subsequence
of length 0. Now let’s see how to compute M i+1 from M i.

Observation 1. M i+1 and M i differ in at most one position
Let j⋆ be the largest index such that M i

j⋆ < ai+1. Then we have the following cases:

• For all j < j⋆, we have M i+1
j = M i

j . This is because we can just take the same increasing
subsequence of length j that we had before.

• For all j > j⋆ + 1, we have M i+1
j = M i

j . This is because we cannot extend any increasing
subsequence of length j using ai+1 since it is too small.

• For j = j⋆ + 1, we have M i+1
j = min(M i

j , ai+1). This is because we can either take the
same increasing subsequence of length j that we had before, or we can extend the increasing
subsequence of length j − 1 ending in M i

j−1 by adding ai+1 to it.

This observation gives us a way to solve the problem in O(n2) time. Keep an array M of size n
initialized to [−∞,∞, . . . ,∞]. For each i from 1 to n, update M by finding the largest j such that
Mj < ai and then setting Mj+1 = min(Mj+1, ai). Basically, the value of M in the ith iteration
is exactly M i. So the answer to the problem is the largest k such that Mk < ∞ at the end of the
algorithm. Since each iteration takes O(n), and we have n iterations, the overall running time is
O(n2). Let’s make one more observation to speed this up.

Observation 2. M i is a monotonically increasing sequence, i.e., M i
1 < M i

2 < M i
3 < . . .

This is because if we have an increasing subsequence of length k ending in M i
k, then we can always

remove the last element to get an increasing subsequence of length k − 1 ending in some element
less than M i

k. Since M i
k−1 is the minimum possible last element of an increasing subsequence of

length k − 1, it must be less than M i
k.

Since M i is monotonically increasing, we can find the largest j such that M i
j < ai+1 using binary

search in O(log n) time. This means that we can update the above algorithm to perform each
iteration in O(log n) time. Thus, we have n iterations, each taking O(log n) time, leading to an
overall running time of O(n log n).

Here is some pseudocode for the algorithm we just described:

2



1. Initialize array M [1..n] where:

• M [0] = −∞ (dummy value for length 0)

• M [1..n] = +∞ (no subsequences of these lengths yet)

2. For i = 1 to n:

• Find largest j such that M [j] < a[i] using binary search

• Set M [j + 1] = min(M [j + 1], a[i])

3. Return largest k such that M [k] < +∞

Practice

Problem 1

You’re given a sequence of integers a1, . . . , an. A subsequence is almost-increasing if it contains
at most one index t where at ≥ at+1 (i.e., at most one descent). Design an O(n2) algorithm to
compute the maximum length of an almost-increasing subsequence of a.

Problem 2

You are given two integers n and k, give an algorithm to compute nk in O(log k) time.

Note, for the sake of this problem you can assume that multiplying two integers takes O(1) time
even if their magnitude depends on n and k. If this feels uncomfortable, you can assume that you
are computing nk mod m for some constant integer m.

3



Challenge

Problem 1

n shipping containers, with weights w1, . . . , wn, need to be transported across the Hudson River
from New Jersey to New York. There is a ferry that can transport the containers, but has a maxi-
mum weight capacity of W . You want to find the minimum number of round trips the ferry needs
to make in order to transport all the containers across the river.

(a) Show that the following greedy algorithm does not always find the optimal solution:

• While there are still containers to transport:

– Load the ferry with as much weight as possible without exceeding the weight limit W .
Break ties arbitrarily.

– Make a round trip across the river and back.

(b) Design an algorithm to find the minimum number of round trips in O(n2n) time.

4


	Learn
	Practice
	Challenge

