COS 330: Great Ideas in Theoretical
Computer Science

Fall 2025

Precept 10
My perfect code

Learn

In lecture we learned about error-correcting codes and how they allow us to reliably transmit or
store information. Here we will review some of the key definitions, and we will also see another
family of codes.

Let’s recall the foundational definitions from class. Suppose we have n-bit messages we want to
store in a potentially corruptible storage device or that we want to transmit over a noisy channel.
We encode each n-bit message into a longer m-bit string (with m > n), adding redundancy, and
then decode it back after transmitting it or reading it from our storage device.

Formally, a binary code consists of an encoding function Enc : {0,1}" — {0, 1}" and a decoding
function Dec : {0,1}™ — {0,1}". The encoding is injective (different messages get different
encodings), so we can equivalently think of a code through its codewords: the set C' = {Enc(z) :
x € {0,1}"} C {0, 1}™ of all possible m-bit encodings. We say the code has length m, dimension
n (the number of message bits), and contains |C'| = 2" codewords.

The Hamming distance dist(y,y’) between two binary strings v,y € {0,1}™ is the number of
positions where they differ. The minimum distance of a code C'is:

dmin(C) = min dist(c,)

c,c’eCc#c!

Why does minimum distance matter? If d,;, (C') > 2e + 1, then we can correct up to e errors, and
if diin (C') > d + 1, we can detect up to d errors. For correction, the intuition is that if we transmit
codeword c but receive a corrupted word y (where at most e bits were flipped), then c is the unique
codeword within distance e of y, so the decoder can find ¢ by looking for the closest codeword.
For detection, even if d bits are flipped, the result cannot be another codeword (since codewords
are at least distance d + 1 apart), so we know an error occurred.

The above gives us two notions of efficiency in codes. First, distance: we want dy,;, (C') to be
large so we can correct or detect many errors. Second, redundancy: we want the length m to be
as close to the message length n as possible, minimizing the extra bits we add. These goals are in
tension—more redundancy typically gives higher distance—so good codes balance both concerns.

Hamming Codes

Now let’s turn to constructing good codes. Let’s start with a simple idea: parity checks.

Suppose we want to send a 4-bit message. We could add a single parity bit that equals the XOR
(sum mod 2) of all 4 message bits. For example, to send (1,0,1,1), we’d compute the parity

1

1®0® 1@ 1 = 1andsend (1,0,1,1,1). This gives us a code with minimum distance 2: any
single-bit error changes the parity, so we can detect one error. But we can’t correct it—we know
an error happened, but not where.

To correct errors, we need minimum distance 3. Here’s the key insight: instead of one parity check
covering all bits, use multiple overlapping parity checks. If different parity checks fail, the pattern
of failures tells us exactly which bit was flipped!

Hamming codes are a family of codes that implement this idea systematically. For any integer
r > 2, we’ll construct a Hamming code with length m = 2" — 1 and dimensionn = 2" — 1 — r.

Encoding. To encode an n-bit message, we create an m-bit codeword as follows: the first n bits
are the message bits (unchanged), and we append r parity check bits at the end:

c= (CD s 7Cm) - ($1,$2, <oy Tn,Po,P1y - - - Jpr—1>7

where c; denotes the bit in position j, and p; is the i-th parity bit, sitting at position n + 1 + ¢
(so pg is at position n + 1, p; at n + 2, and so on). The exact positions of the parity bits are not
important for the distance proof - we just fix this convention since it helps with clarity. (If you are
not convinced with this, try showing that if you permute the bits of all codewords of any code in
the same way, the minimum distance remains unchanged.)

The key idea is to view each position j € {1,2,...,m} via its r-bit binary representation (with
leading zeros as needed). For example, with » = 3 (so m = 7), the positions are:

1=001, 2=010, 3=011, 4= 100, 5= 101, 6 = 110, 7 = 111.

For each i € {0,1,...,r — 1} we define a parity check as follows: look at all positions j whose
binary representation has a 1 in bit ¢ (counting bits from the right, starting at 0), and require that
the XOR of the bits in those positions is 0 (even parity). Formally, for each ¢ we require

gbitiof jis 1
In words, for » = 3 these checks are:

* Check 0 (bit 0): positions 1, 3,5, 7 (all indices with least significant bit 1).
* Check 1 (bit 1): positions 2, 3,6, 7.
* Check 2 (bit 2): positions 4, 5,6, 7.

Note that these sets include the parity positions themselves (e.g., position 5 appears in checks 0
and 2).

The r parity bits py, ..., p,_1 are chosen so that all r equations (%), ..., (*,—1) hold. Given the
message bits x1, . . . , T, this system of » XOR equations has a unique solution for pg, ..., p,_1, SO
the encoding is well-defined. (This isn’t obvious, but can be checked with a bit of linear algebra.
If you want some intuition, there are r equations with unknowns, and the equations are linearly
independent.)

We do not need a closed-form formula for p; in general, but for concreteness here is the case r = 3,
n =4 (som = 7). Solving the three parity equations (), (*1), (*2) gives

C(x1, 22, T3, T4) = (1, T2, T3, Ta, T2 D T3 D Ty, T1 D T3 D Ty, T1 D T2 D y).

2

You can check, for example, that in this codeword
61@03@05@0720, 62@03@66@07:0, 04@05@06@07:07
exactly matching the three checks above.

Distance. We’ll show that any two distinct codewords differ in at least 3 positions.

Take any two distinct codewords

W=V ey and ¢® = (P, ..., ?).

m m

Let
. 1 2
S={y E{l,...,m}:cg»);écy}
be the set of all positions where they differ. The Hamming distance between the two codewords is

exactly |S|, so it suffices to show that |S| > 3.

Both codewords satisfy all r parity checks (*;). Fix some i € {0,...,r — 1}. For each codeword
t € {1,2} we have

gbitiof jis 1

XOR-ing these two equations gives

D o) o

g:bitiof jis 1

The value c§1) &) c§2) is 1 exactly when 5 € S and 0 otherwise. Thus this says:

For each i, among the positions in S whose i-th binary bit is 1, there are an even number of them.

Now suppose, for contradiction, that |S| < 2.

Case 1: |S| = 1. Say S = {/}. Look at any bit position ¢ where the 7-bit binary representation of
¢ has a 1. For this ¢, exactly one position in S has bit ¢ = 1, so the number of positions in S with
i-th bit 1 is 1, which is odd. This contradicts the condition above. Hence |S| # 1.

Case 2: |S| = 2. Say S = {{1, (5} with {; # (5. Because the indices ¢; and ¢ are different, their
r-bit binary representations differ in at least one bit position. Let ¢ be such that the i-th bit of /;
and ¢, are different. Then exactly one of ¢, {5 has bit ¢ = 1, so among S there is an odd number
(namely 1) of positions with i-th bit equal to 1. Again this contradicts the condition above. Hence

5] #2.

Therefore, we cannot have |S| = 1 or |S| = 2, so necessarily |S| > 3. That is, any two distinct
codewords differ in at least 3 positions, so the Hamming code has minimum distance 3.

In particular, this means the code can detect up to 2 bit errors and correct any single-bit error. We
won’t go over how to efficiently encode or decode messages using Hamming codes, but there are
well-known algorithms running in linear time in 7 to do so.

In this problem, we’ll explore lower bounds on the redundancy of error-correcting codes, culmi-
nating in a proof of why Hamming codes are called “perfect” codes.

Let C' C {0, 1}™ be a binary code with minimum distance d,,,;,(C') = 3 (note that this is any code,
not necessarily a Hamming code.) As we saw in the Learn section, this means C' can correct up to
1 error.

For any codeword ¢ € C, define the Hamming ball of radius 1 centered at c as:
Bi(c) ={z €{0,1}™ : dist(x,c) < 1}
This is the set of all binary strings within distance 1 of c.

(a) Show that |B;(c)| =1+ m forany c € {0,1}".

(b) Prove that if C' has minimum distance 3, then the balls B;(c) are pairwise disjoint for distinct
codewords ¢, ¢ € C.

Hint: Use the triangle inequality for Hamming distance: dist(z, ¢) > dist(c, ¢') — dist(z, ¢).

(c) Use parts (a) and (b) to prove the Hamming bound: if C has |C| codewords, length m, and
minimum distance 3, then:
C- (1 +m) <2™

om

or equivalently, [C'] < 5 el
Hint: The balls are disjoint subsets of {0, 1}™.

(d) A code is called perfect if it achieves equality in the Hamming bound. Show that the Hamming
code with parameters m = 2" — 1 (length) and n = 2" — 1 — r (dimension) is perfect.

Hint: Verify that |C| - (1 +m) = 2™ by substituting the values, recalling that |C| = 2.

	Learn
	Practice

