

Lecture 6: Probability Review Question:

USA.
300 mil R&D parties 1-2 Lillion

Goal: Estimate the percentage of R voters up to 1% error.

Method: randomly sample & potential voters report the fraction of R voters

How much larger, compared to the US; should the "s" be for India?

More abstract example: n independent tosses of a faircoin. what's the chance of seeing 51% heads?

Tobability Review Sample Space: Set of all possible outcomes. In 2rd example: EH,T3n C) = all possible sequences with Hort of lengthn. Each ontcome has a probability mass p(x). Then, $\leq p(x)=1$.

Events: Subsets of Q. $\forall S \subseteq \Omega$, $\mathbb{R}^{r}[S] = p(s) = \sum_{x \in S} p(x)$ Conditional Robability Pr[S|T] = Pr[SNT]
Pr[T) Creelvalued) Rondom Variables

Neither random, nor variable

Def: A random variable 15 real-valued

function X: 2 -> 1R.

Ex: X:= { 1 if ith toss is head

O 0/W

Independent Random Variables $X_1 y$ are indep if P(X=a) = P(X=a). P(Y=b)

also called indicator vardom var.

Cour tosses

Note: X = Zi Xi

Linearity of Expectation

For every X1,...,Xn (not necessarily endep).

#[ZiXi] = [[Xi] E[# heads in nooin tosses] = ZiE(Xi) $=\frac{\sqrt{1}}{2}$. Union Bound

RLA, VAJ < RCATHRCAD

$$E_{3}. \quad \mathbb{R} \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right] = \frac{1}{2} \cdot \frac{1}$$

Markov's Inequality is tight.

E.g. X=0 w.p(+/x), X=1 wp. /x. EX= K. RCX>k.EX= K. (When) Can we do better?

Functions not overly sensitive to
any single coordinate

Principle: Sum of indep vandom variables Concentrate around the mean. Vaviance measure of deviation around the mean.

Def:
$$Var(X) = \mathbb{E}(X-\mathbb{E}X)^2$$

Caverage of squared deviation around
the mean)
 $e:g$. $Xi = \begin{cases} 1 & \text{W.p. p} \\ 0 & \text{o/w} \end{cases}$
 $\mathbb{E}[Xi = p] \quad Var(X) = \mathbb{E}[Xi-p] \\ = (1-p)^2 p \\ + p^2 cl-p)$

 $= p + p^3 - 2p^2 + p^2 - p^3$

= P-P= P(1-P)

Lemma (Variance of a Sum of video R.V-s) X=ZiXi Xi undep-Then, Var(X) = \(\int i\) Var(Xi). X-EX= Zi (Xi-EXi) E(X-EX)= E (X;-EXi)

= ZECX;-EX;)2

+ ZECXTEXI)CX-EXI)

= Zi Var (Xi)

E.g. $X = \Sigma_i X_i$, $X_i = S_i \text{ wp. p}$ $V_{av}(X) = \Sigma_i V_{av}(X_i)$

 $Var(X) = \sum_i Var(X_i)$ = n.p.(1-p).

= N.p. (1-p).
For p= 1/2 9 Var (X)= 11/4.

Lemma (Chebysher) Pr[|X-EX|2 t: Var(X)] < 42 R[[X-E[X]] >t[Var(X)] = IPV [CX-EX) 7, t. Var(X)] < /2 by Markor Simple example of moment method. Can use any monotone function instead of the square. Cor: Pr[# heads Z 12 (1+8)] = 1Pr[- 7/2+ 5/n, 5/n | 5/n Significantly better bound than prev: 1+8~1-8

if n is large For sum of ender r.v.s we'll use the moment method to derivé a significantly tighter bound.

Theorem C Charnoft, Hoeffding)

 $X = Z_i X_i$, X_i under $\int_{\omega}^{\omega} \int_{\omega}^{\omega} \frac{1 \, w \cdot p \cdot P_i}{\sigma \, o / \omega}$ Ma=EX= ZiXi= ZiPi.

Then, Pr[X7 (1+8), re] < e = 2+8 pc

Pr[X≤(1-8)m]≤e= 45<1

Pr[X-4/28m] = 2.e- m.g. H

Let's apply this in 2 examples to see how ets going. In the fair coon toss example,

EXC=P= 1/2 +i. $EX = \frac{h}{2}$. $\frac{2}{60}$ $Pr[X7(1+\delta).\mu] \le \frac{8^{2}\mu}{4}$. $\frac{4}{5}$. $\frac{4}{5}$. $\frac{4}{5}$. $\frac{4}{5}$. $\frac{4}{5}$. $\frac{4}{5}$. - 104.6 e 104.6 grows this falls exponentially fast. Markov tail: 1+8 Recall: Chebysher tail: 52N -> " uvierse pdy" Charnot-ftail: "inverse exp"

Thm: (Hueffding)

Xi C [0,1], indep; EXi=Pi

Pr[[X-n]=t] \le 2. e^{-\frac{2t^2}{n}}.

Polling Question. þ frac R Suppose population has 2 (1-p). frac D. $\lambda_i = \begin{cases}
1 & \text{if ith sample is } R \\
0 & \text{o/}\omega
\end{cases}$ What's EXi? Var Xi?

p · 1 p. C1-p). Suppose we take n samples. #of R: X= ZiXi EX= n.b. Pr[|xn| > 8.n] < 2.e 282.n2/2

δ=2% say.

Then: $2.e^{-2.\frac{4}{104}}$ $\leq \frac{1}{20} = 5\%$ if $1 \geq 4600$ (Sow) Say. A sample size of 5000 is enough to Sot a 21. error estimate with 95%. Confidence. doesn't depend at all on the Size of

the population.

Proof of Chernoff Bound RCXZt $= \left[\Pr\left[e^{SX} \right] \right]$ SE[esx] Markor et.s

E e SXi

Tikes.

= Thi (05.p+1-p)

$$\begin{aligned}
&= T_i e^{p(e^s-1)} \\
&+ y \le e^s \\
&= e^{\mu \cdot (e^s-1)}
\end{aligned}$$

 $t = (l+\delta).M$ $S = In(l+\delta).$