

Lecture 4: Network Flows

- ► Review of Max Flow/Min Cut and Ford Fulkerson
- ▶ Dinitz-Edmonds-Karp Algorithm
- ► Application to Bipartite Matching

Resources

- ► CLRS, Introduction to Algorithms
- Erikson, Algorithms
- ► CMU 15-451, Introduction to Algorithms, Network Flows 1 and 2

Network Flow

Motivation (Flow network): Consider a network of pipes, each able to handle a certain number of liters of water per minute.

How much water can you send from s to t?

Definition (Flow network): A directed graph with

- Edge *capacities c*(u, v)
- A *source* vertex *s*
- A *sink* vertex *t*

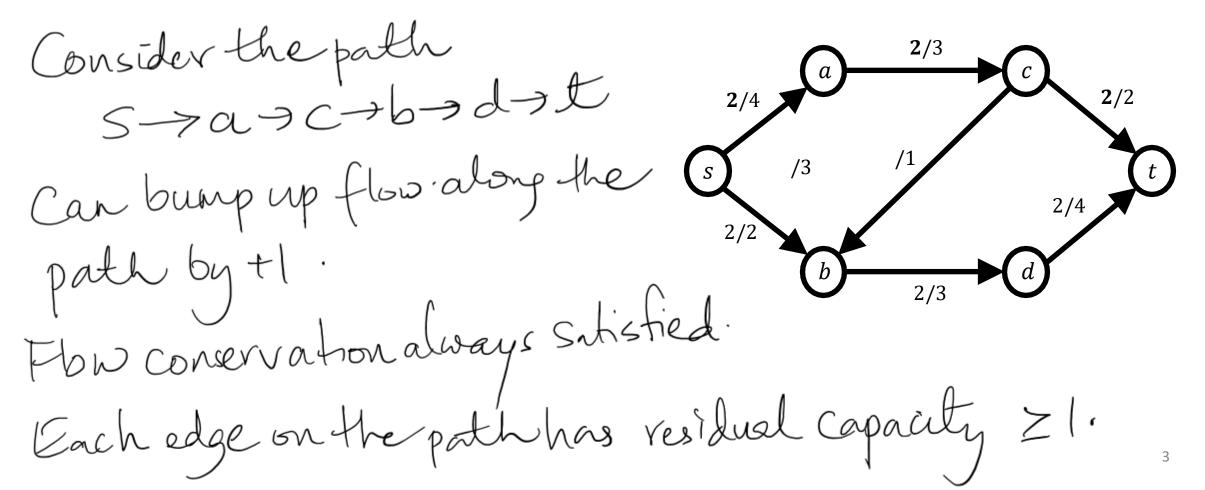
Definition (A flow): A quantity of flow on each edge, $f: E \to \mathbb{R}$, called *feasible* if:

- Conservation: Flow in = Flow out $\forall v \notin \{s, t\}$
- Capacity: $0 \le f(u, v) \le c(u, v)$



Improving a flow: s-t paths

• Is the flow on the right optimal?



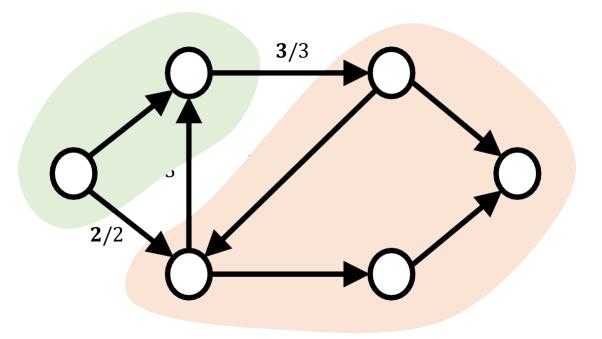
Certifying Optimality: s-t cuts

• Is the flow on the right optimal?

Definition (s-t Cut): An **s-t cut** is a partition of the vertices into two disjoint sets (S, T) such that $s \in S$ and $t \in T$

Definition (Capacity): The *capacity* of an *s-t* cut (S, T) is the total capacity on edges (u, v) where $u \in S$ and $v \in T$:

$$cap(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$$



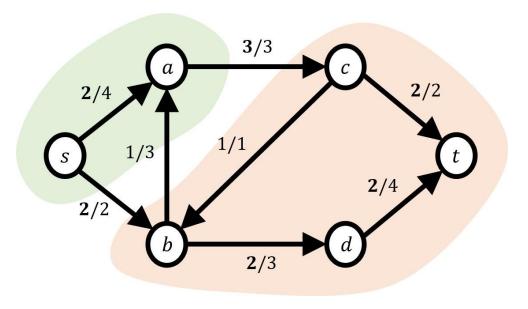
Net Flow Across a Cut

Definition (Net flow): The *net flow* across an s-t cut (S, T) is the amount of flow moving from S to T:

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

Observe: The value of a flow (which we defined as the net flow out of s) is the net flow across the cut $(\{s\}, V \setminus \{s\})$

Theorem: For any s-t cut (S, T), the net flow across the cut equals the value of the flow!



Proof: Algebra using the definitions.

Net Flow Theorem

Theorem: For any s-t cut (S, T):

$$f(S,T) \leq \operatorname{cap}(S,T)$$

Proof:

$$f(x,y) = \sum_{u,v} f(x,u) - \sum_{u,v} f(x,u)$$

$$\leq \sum_{u,v} c(u,v) - \sum_{u,v} f(x,u)$$

$$\leq \sum_{u,v} c(u,v) = cop(s,t)$$

Corollary: max-flow ≤ min-cut

Definition (Capacity): The *capacity* of an *s-t* cut (S, T) is the total capacity on edges (u, v) where $u \in S$ and $v \in T$:

$$cap(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$$

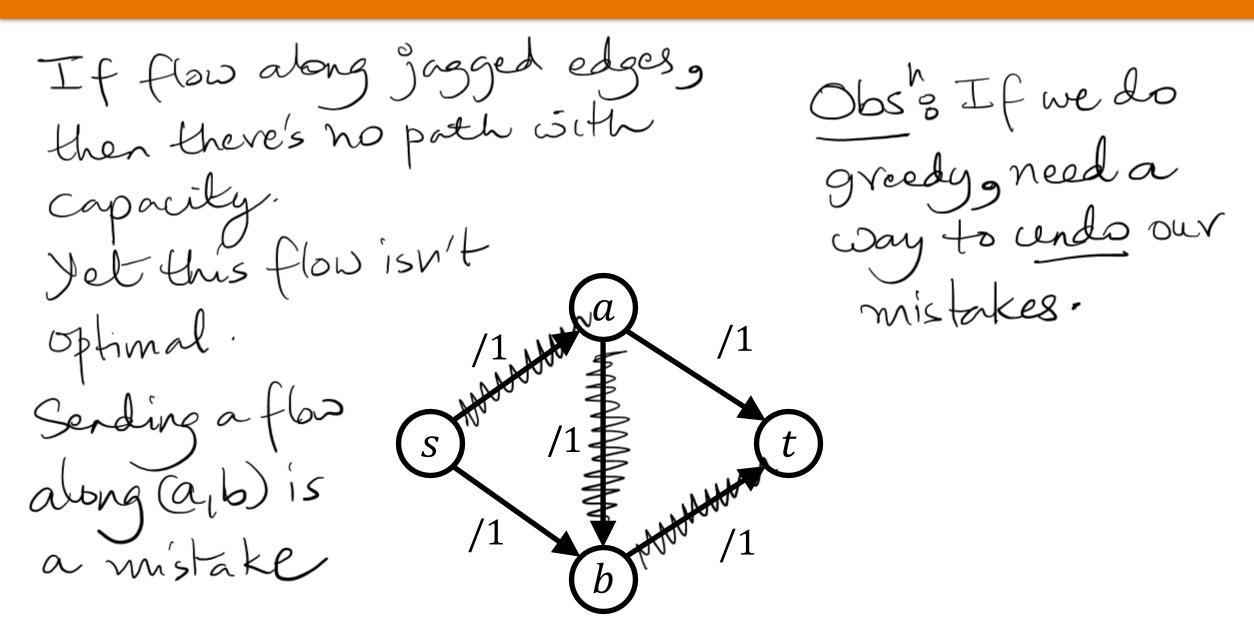
Definition (Net flow): The *net flow* across an s-t cut (S, T) is the amount of flow moving from S to T:

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

Proof:

any flow & max flow & mincut & any cut

How does greedy do?

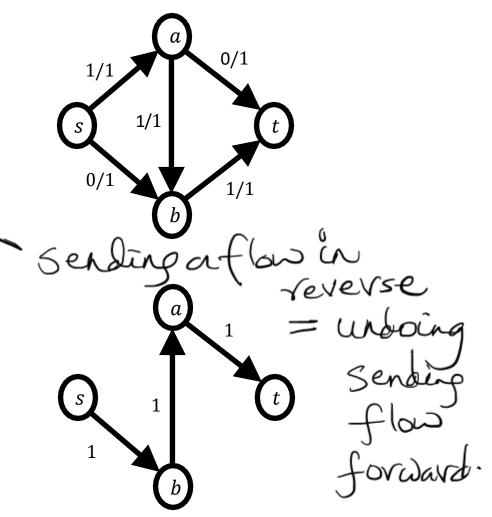


The residual graph

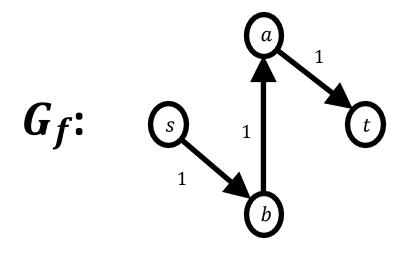
Definition (residual capacity): An edge (u, v) with capacity c(u, v) and current flow f(u, v) has *residual capacity*

$$c_f(u,v) = \begin{cases} c & (u,v) - f(u,v), & (u,v) \in E \\ f(v,u), & (v,u) \in E \end{cases}$$

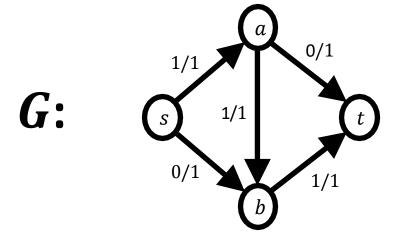
Definition (residual network): Given a flow network G and a current flow f, the *residual network* G_f is a flow network whose capacities are the residual capacities c_f (u,v)



Augmenting Paths



Definition (augmenting path): An *augmenting path* is a path from *s* to *t* of non-zero capacity in the residual network.

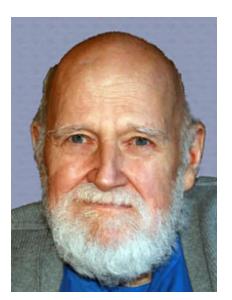


Key idea (reverse edges): Augmenting along a *reverse edge* removes that amount of flow from the edge.

The Ford-Fulkerson Algorithm

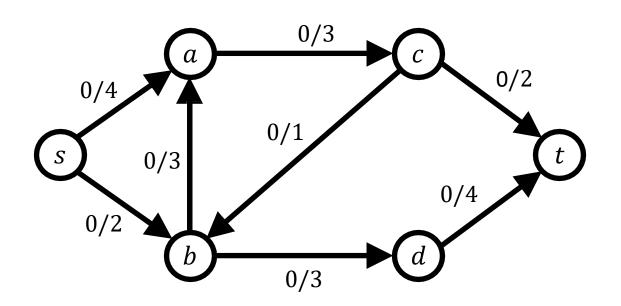
Algorithm (Ford-Fulkerson):

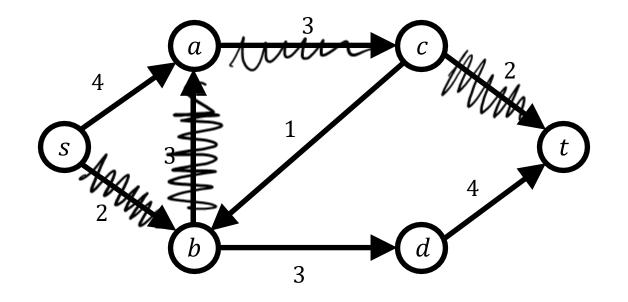
While
Fan augmenting path
(fend using DFS or BFS)
add +1 flow to it.



Delbert Fulkerson

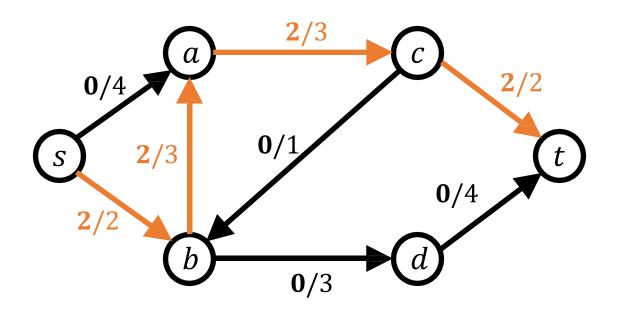
$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E. \end{cases}$$

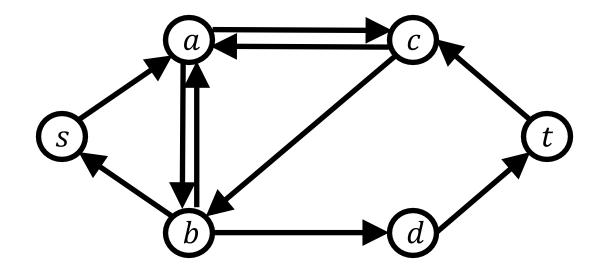




Flow network G

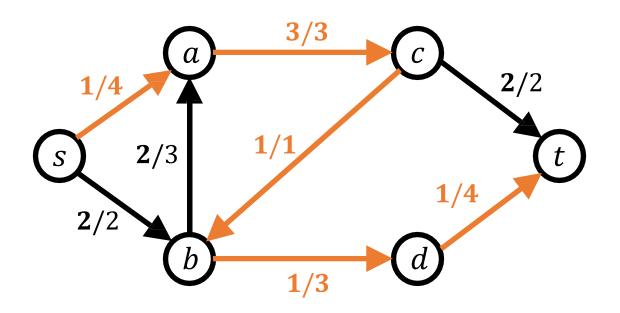
$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E. \end{cases}$$

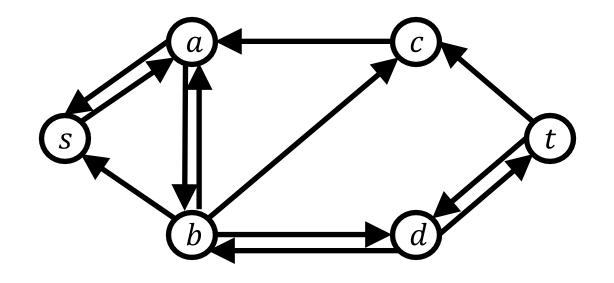




Flow network G

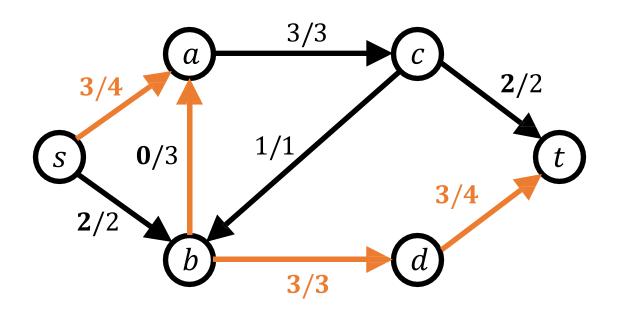
$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E. \end{cases}$$

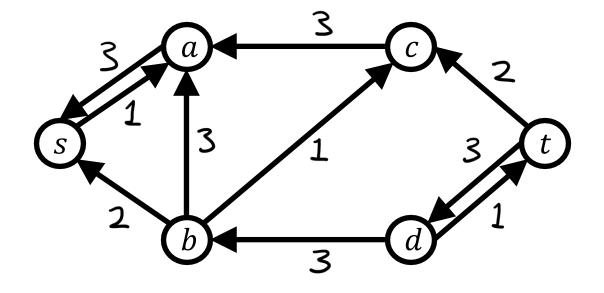




Flow network G

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E. \end{cases}$$





Flow network G

Analysis

Theorem (maximality): *If all capacities are integers,* Ford-Fulkerson finds a flow whose value is equal to the capacity of the minimum cut.

Proof: Ford Fulkerson stops > Vesidual network has no s-t S= {U|Sいりは、ナー、{U|Vいりむ} Let (U,V) be any edg, u 59 tot vin the original retwork. Sunce (u,v) has O capitaly in the (reachable) residual networks (u,v) = ((u,v) - ((u,v)). (su) So: value of flow = Net flow across cut(SIT) - (un) Ecutosit) fair) = E ((un))

Analysis

Theorem (runtime): *If all capacities are integers*, Ford-Fulkerson runs in O(mF) time, where F is the value of the maximum s-t flow.

Analysis: Max-Flow = Min-Cut

Corollary (*Min-cut Max-flow theorem***):** If the capacities are all integers, for any flow network, the value of the maximum *s-t* flow is equal to the capacity of the minimum *s-t* cut

Analysis

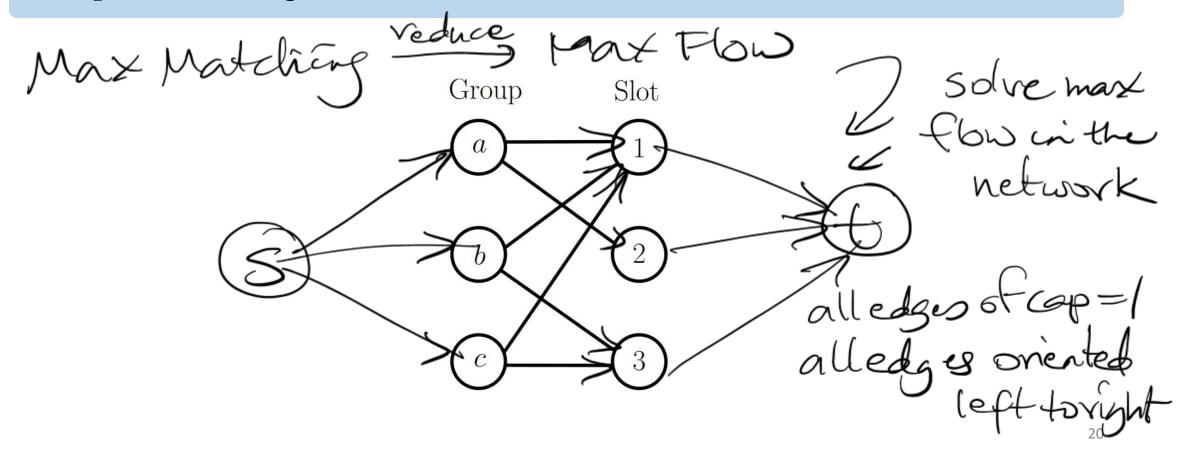
Theorem (Integral flows): If the capacities are all integers, for any flow network with integer capacities, there exists a maximum flow in which the flow on every edge is an integer

Proof: A priori, there was no reason to expect integer flows. But Ford-Fulkerson shows that there's always an optimal flowthat is integral.

Applications

Bipartite Matching

Problem (Bipartite matching): Given a bipartite graph G, find a largest possible set of edges with no endpoints in common.



Reducing bipartite matching to max-flow

Important (flow model proofs): When modeling problems with flow, you need to prove that the reduction is correct! This usually consists of a bidirectional proof.

Claim #1 Given a matching M in the original graph, there exists a flow f in our flow network of value |M| ($max\ flow \ge max-matching$) faury = 1 4 curseM. f(Vit) f(Siu) ave 1 i fugi avenatched in M Every vertex has at most one edge in M So: Copacity constraints sate

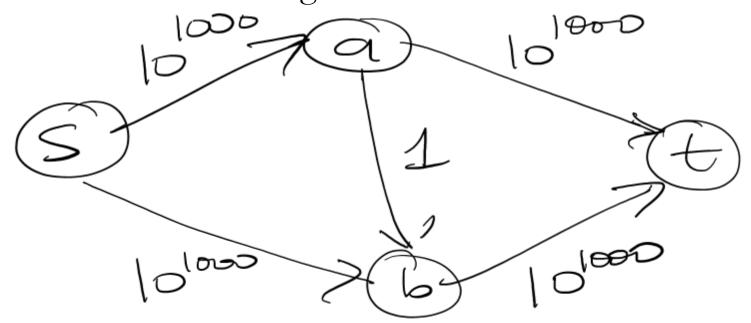
Reducing bipartite matching to max-flow

Important (flow model proofs): When modeling problems with flow, you need to prove that the reduction is correct! This usually consists of a bidirectional proof.

Back to running time analysis for Ford-Fulkerson

Theorem: Ford-Fulkerson runs in O(mF) time (with integer capacities)

Also Theorem: This bound is tight



iterations

what's the

size of

the

chout?

Can we make it faster?

- Ford-Fulkerson finds any augmenting path until there are none left
- *Idea*: Can we find "good" augmenting paths that guarantee a better running time? Yes!
- · Idea #1: Shortest augmenting paths
- · Idea #2: "max bottleneck" paths

Dinitz-Edmonds-Karp: Shortest Augmenting Paths

• When we described Ford-Fulkerson, we found *any* augmenting path, (usually DFS is the simplest possible implementation)

Algorithm (Dinitz-Edmonds-Karp): Implement Ford-Fulkerson by finding *shortest augmenting paths* (e.g., using BFS) at each iteration.

Dinitz

Edmonds



Karp

Dinitz-Edmonds-Karp: Shortest Augmenting Paths

• When we described Ford-Fulkerson, we found *any* augmenting path, (usually DFS is the simplest possible implementation)

Algorithm (Dinitz-Edmonds-Karp): Implement Ford-Fulkerson by finding *shortest augmenting paths* (e.g., using BFS) at each iteration.

Theorem: Dinitz-Edmonds-Karp runs in $O(nm^2)$ time (poly time!)

Analysis of Dinitz-Edmonds-Karp

Lemma: Let d be the distance from s to t in the residual graph G_f . During Dinitz-Edmonds-Karp, d never decreases.

Analysis of Dinitz-Edmonds-Karp

Lemma: After m iterations, d must increase.

An edge can only unsaturate after d'increases.

Conclusion:

- Each iteration takes:
- Iterations per value of d: $\bigcirc(\mathcal{M})$
- d can increase: γ

Harithmetic operations do not depend on input numbers

Corollary: Maximum flow can be solved in strongly polynomial time!

Modern Approach to Maximum Flow

"push relabel" approach to max flow

 $O(n^2m)$ time algorithm

Enter continuous optimization [Christiano-Kelner-Madry-Spielman-Teng...]

View the problem as a problem of finding a point in the intersection of two convex sets.

[Chen-Kyng-Liu-Peng-ProbstGutenberg-Sachdeva'22]

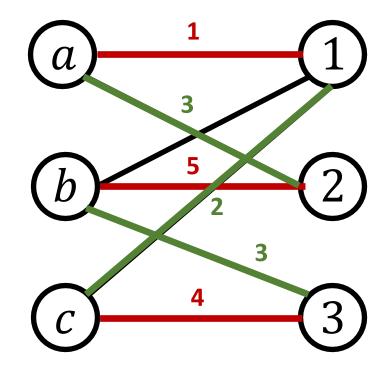
 $< O(m^{1=\epsilon})$ for every $\epsilon > 0!$ A near-linear time algorithm!

Minimum-cost Flows

Not covered in the lecture Wort be on the tests.

Min-Cost Flow

- There can be multiple maximum flows in a particular network
- What if we want to preference some over others?
- Example: Bipartite matching allows us to find whether a matching is possible. If there are multiple, can we also have preferences so that we get the "best" matching?



Min-Cost Flows

- We consider the same setting as before: A directed graph with capacities.
- Edges now also have *costs*. Edge e costs \$(e)
- The cost of an edge is **per unit of flow**. The total cost is

- Goal: Find maximum flow of minimum cost
- *Note*: Other variants of the problem exist. E.g., you might want the minimum possible cost, regardless of the flow value (not maximum)

Assumptions

- Negative costs are allowed!
- Negative cycles are also allowed!!
 - However, some algorithms don't work.
 - Assume that there is no infinite capacity negative cycle (or the cost is $-\infty$)

The residual network

- The residual network is a powerful tool. Let's keep using it
- We define the residual capacities and residual costs

$$c_f(u, v) =$$

$$S_f(u,v) =$$

An Augmenting Path Algorithm

- Ford-Fulkerson finds a maximum flow (ignoring costs completely)
- What is a natural way to choose the augmenting paths?
- Find a *cheapest augmenting path*.
- Use Bellman-Ford to find the augmenting paths (why not Dijkstra?)
- Requires no negative cycles in the input network!
- Assume integer capacities as well for termination

An Augmenting Path Algorithm

- We need two things:
 - Question 1: Does the algorithm terminate?
 - Question 2: Does it give a minimum-cost flow?

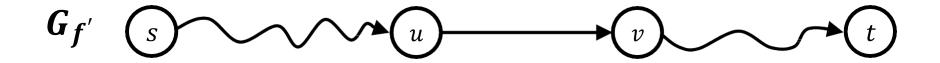
To answer Question 1, we need to prove that G_f never contains a negative-cost cycle! (Or the cheapest path would be undefined).

Theorem: Given a network G and flow f such that G_f contains no negative-cost cycles, if we augment a cheapest path, then the result still has no negative-cost cycles.

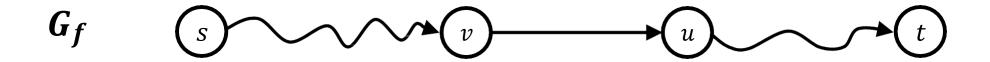
Lemma: Augmenting a cheapest path does not **decrease** the cost of the cheapest s-t path in the residual network.

Lemma: Augmenting a cheapest path does not **decrease** the cost of the cheapest s-t path in the residual network.

Let
$$c(v) = cost$$
 of cheapest $s \to v$ path in G_f (before augmenting)
AFSOC that after augmenting, \exists an s - t walk cheaper than c (t)



So, $S_{f'}(u, v)$ must have changed! What is it?



Lemma: Augmenting a cheapest path does not **decrease** the cost of the cheapest *S-t* path in the residual network.

Theorem: Given a network G and flow f such that G_f contains no negative-cost cycles, if we augment a cheapest path, then the result still has no negative-cost cycles.

Corollary: The cheapest augmenting path algorithm terminates!

Cheapest Augmenting Paths: Total Cost

• Similar analysis to Ford-Fulkerson

Theorem: Cheapest augmenting paths runs in O(nmF) time

- Its just Ford-Fulkerson using Bellman-Ford at each iteration.
- Bellman-Ford costs O(nm) and each iteration adds at least 1 flow
- So, the algorithm runs in O(nmF)

Takeaways

- Maximum flow can be solved in polynomial time (near-linear time as of 2022)!
- Dinitz-Edmonds-Karp (shortest augmenting paths) runs in $O(m^2n)$ time.
- Powerful modeling tool.