
COS330: Great Ideas in Theoretical Computer Science Fall 2025

Lecture 4: Network Flows

 Review of Max Flow/Min Cut and Ford Fulkerson

Dinitz-Edmonds-Karp Algorithm

Application to Bipartite Matching

Resources

 CLRS, Introduction to Algorithms

Erikson, Algorithms

CMU 15-451, Introduction to Algorithms, Network Flows 1 and 2

Motivation (Flow network): Consider a
network of pipes, each able to handle a certain
number of liters of water per minute.

How much water can you send from 𝑠 to 𝑡?

𝑏 𝑑

𝑠 𝑡

/3
𝑎 𝑐

/1

/4
/2

/4 /2

/3

𝑠

𝑎

𝑏

𝟑/4

2/2

/3

𝟑/3
𝑐

𝟐/2

𝟏/1
𝑡

𝟑/4

𝑑
𝟑/3

𝟎/3

Definition (Flow network): A directed graph with

• Edge capacities 𝑐 𝑢, 𝑣

• A source vertex 𝑠

• A sink vertex 𝑡

Definition (A flow): A quantity of flow on each
edge, 𝑓: 𝐸 → ℝ, called feasible if:

• Conservation: Flow in = Flow out ∀𝑣 ∉ {𝑠, 𝑡}

• Capacity: 0 ≤ 𝑓 𝑢, 𝑣 ≤ 𝑐 𝑢, 𝑣

2

Network Flow

Definition (Value of a flow): The value of a flow
is the net flow leaving 𝑠

Problem (Maximum flow): Find a feasible flow
with the maximum possible value of all such flows.

• Is the flow on the right optimal?

𝑠

𝑎

𝑏

𝑐

𝑑

𝑡

𝟐/4

2/2

𝟐/3

/1

2/3

2/4

𝟐/2

/3

3

Improving a flow: s-t paths

• Is the flow on the right optimal?

𝑠

𝑎

𝑏

𝑐

𝑑

𝑡

𝟑/4

𝟐/2

𝟑/3

1/1

𝟑/3

𝟑/4

𝟐/2

0/3

Definition (𝒔-𝒕 Cut): An 𝒔-𝒕 cut is a
partition of the vertices into two disjoint sets
(𝑆, 𝑇) such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇

Definition (Capacity): The capacity of an 𝑠-𝑡
cut (𝑆, 𝑇) is the total capacity on edges (𝑢, 𝑣)
where 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇:

cap S, T =෍

𝑢∈𝑆

෍

𝑣∈𝑇

𝑐(𝑢, 𝑣)

4

Certifying Optimality: s-t cuts

Proof: Algebra using the definitions.

Definition (Net flow): The net flow across an

𝑠-𝑡 cut (𝑆, 𝑇) is the amount of flow moving
from 𝑆 to 𝑇:

𝑓 𝑆, 𝑇 = ෍

𝑢∈𝑆

෍

𝑣∈𝑇

𝑓 𝑢, 𝑣 −෍

𝑢∈𝑆

෍

𝑣∈𝑇

𝑓(𝑣, 𝑢)

Observe: The value of a flow (which we

defined as the net flow out of 𝑠) is the net

flow across the cut 𝑠 , 𝑉 ∖ 𝑠

Theorem: For any 𝑠-𝑡 cut (𝑆, 𝑇), the net flow

across the cut equals the value of the flow!

5

Net Flow Across a Cut

Proof:

Theorem: For any 𝑠-𝑡 cut 𝑆, 𝑇 :

𝑓 𝑆, 𝑇 ≤ cap(𝑆, 𝑇)

Corollary: max-flow ≤ min-cut

Proof:

Definition (Net flow): The net flow across an

𝑠-𝑡 cut (𝑆, 𝑇) is the amount of flow moving
from 𝑆 to 𝑇:

𝑓 𝑆, 𝑇 =෍

𝑢∈𝑆

෍

𝑣∈𝑇

𝑓 𝑢, 𝑣 −෍

𝑢∈𝑆

෍

𝑣∈𝑇

𝑓(𝑣, 𝑢)

6

Net Flow Theorem

Definition (Capacity): The capacity of an 𝑠-𝑡
cut (𝑆, 𝑇) is the total capacity on edges (𝑢, 𝑣)
where 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇:

cap S, T =෍

𝑢∈𝑆

෍

𝑣∈𝑇

𝑐(𝑢, 𝑣)

𝑠

𝑎

𝑏

𝑡

/1

/1 /1

/1

/1

7

How does greedy do?

𝑠

𝑎

𝑏

𝑡

1/1

0/1 1/1

0/1

1/1

𝑠

𝑎

𝑡

1

𝑏

1

1

Definition (residual capacity): An edge (𝑢, 𝑣)
with capacity 𝑐(𝑢, 𝑣) and current flow
𝑓(𝑢, 𝑣) has residual capacity

𝑓𝑐 𝑢, 𝑣 =
𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 ,

𝑓 𝑣, 𝑢 ,

𝑢, 𝑣 ∈ 𝐸

𝑣, 𝑢 ∈ 𝐸

8

The residual graph

Definition (residual network): Given a flow

network 𝐺 and a current flow 𝑓, the residual
network 𝐺𝑓 is a flow network whose
capacities are the residual capacities 𝑐𝑓 (u,v)

𝑠

𝑎

𝑏

𝑡

1/1

0/1 1/1

0/1

1/1

𝑠

𝑏

𝑡

1

𝑎
1

1𝑮𝒇:

𝑮:

Definition (augmenting path): An
augmenting path is a path from 𝑠 to 𝑡 of non-
zero capacity in the residual network.

Key idea (reverse edges): Augmenting along a
reverse edge removes that amount of flow
from the edge.

9

Augmenting Paths

Algorithm (Ford-Fulkerson):

10

The Ford-Fulkerson Algorithm

Les Ford Delbert Fulkerson

𝑠

𝑎

𝑏

𝑐

𝑑

𝑡

0/4

0/2

0/3

0/1

0/3

0/4

0/2

0/3

Flow network 𝑮 Residual network 𝑮𝒇

𝑠

𝑎

𝑏

𝑐

𝑑

𝑡

4

2

3

1

3

4

2

3

11

Example

𝑠

𝑎

𝑏

𝑐

𝑑

𝑡𝑠

𝑎

𝑏

𝑐

𝑑

𝑡

𝟎/4

𝟐/2

𝟐/3

𝟎/1

𝟎/3

𝟎/4

𝟐/2

𝟐/3

12

Example

Flow network 𝑮 Residual network 𝑮𝒇

𝑠

𝑎

𝑏

𝑐

𝑑

𝑡

𝟏/𝟒

𝟐/2

𝟑/𝟑

𝟏/𝟏

𝟏/𝟑

𝟏/𝟒

𝟐/2

𝟐/3 𝑠

𝑎

𝑏

𝑐

𝑑

𝑡

13

Example

Flow network 𝑮 Residual network 𝑮𝒇

𝑠

𝑎

𝑏

𝑐

𝑑

𝑡𝑠

𝑎

𝑏

𝑐

𝑑

𝑡

𝟑/𝟒

𝟐/2

3/3

1/1

𝟑/𝟑

𝟑/𝟒

𝟐/2

𝟎/3

14

Example

Flow network 𝑮 Residual network 𝑮𝒇

Theorem (maximality): If all capacities are integers, Ford-Fulkerson finds a flow

whose value is equal to the capacity of the minimum cut.

Proof:

15

Analysis

Theorem (runtime): If all capacities are integers, Ford-Fulkerson runs in 𝑂(𝑚𝐹)

time, where 𝐹 is the value of the maximum 𝑠-𝑡 flow.

Proof:

16

Analysis

Corollary (Min-cut Max-flow theorem): If the capacities are all integers, for

any flow network, the value of the maximum 𝑠-𝑡 flow is equal to the capacity of

the minimum 𝑠-𝑡 cut

Proof:

17

Analysis: Max-Flow = Min-Cut

Theorem (Integral flows): If the capacities are all integers, for any flow network

with integer capacities, there exists a maximum flow in which the flow on every edge

is an integer

Proof:

18

Analysis

19

Applications

Problem (Bipartite matching): Given a bipartite graph 𝐺, find a largest possible set
of edges with no endpoints in common.

20

Bipartite Matching

Important (flow model proofs): When modeling problems with flow, you need to

prove that the reduction is correct! This usually consists of a bidirectional proof.

Claim #1 Given a matching 𝑀 in the original graph, there exists a flow 𝑓
in our flow network of value|𝑀| (max flow ≥ max-matching)

21

Reducing bipartite matching to max-flow

Important (flow model proofs): When modeling problems with flow, you need to

prove that the reduction is correct! This usually consists of a bidirectional proof.

Claim #2: Given a flow 𝑓 in our flow network, there exists a matching 𝑀
of size 𝑓 in the original graph (⇒ max-flow ≤ max-matching)

22

Reducing bipartite matching to max-flow

Theorem: Ford-Fulkerson runs in 𝑶(𝒎𝑭) time (with integer capacities)

Also Theorem: This bound is tight

23

Back to running time analysis for Ford-Fulkerson

• Ford-Fulkerson finds any augmenting path until there are none left

• Idea: Can we find “good” augmenting paths that guarantee a better
running time? Yes!

• Idea #1:

• Idea #2:

24

Can we make it faster?

• When we described Ford-Fulkerson, we found any augmenting path,
(usually DFS is the simplest possible implementation)

Algorithm (Dinitz-Edmonds-Karp): Implement Ford-Fulkerson by finding

shortest augmenting paths (e.g., using BFS) at each iteration.

25

Dinitz-Edmonds-Karp: Shortest Augmenting Paths

• When we described Ford-Fulkerson, we found any augmenting path,
(usually DFS is the simplest possible implementation)

Algorithm (Dinitz-Edmonds-Karp): Implement Ford-Fulkerson by finding

shortest augmenting paths (e.g., using BFS) at each iteration.

Theorem: Dinitz-Edmonds-Karp runs in 𝑂(𝑛𝑚2) time (poly time!)

26

Dinitz-Edmonds-Karp: Shortest Augmenting Paths

𝑠 𝑡

𝑢 𝑣

Lemma: Let 𝑑 be the distance from 𝑠 to 𝑡 in the residual graph 𝐺𝑓.

During Dinitz-Edmonds-Karp, 𝑑 never decreases.

27

Analysis of Dinitz-Edmonds-Karp

Conclusion:

• Each iteration takes:

• Iterations per value of 𝑑:

• 𝑑 can increase:

Lemma: After 𝑚 iterations, 𝑑 must increase.

Corollary: Maximum flow
can be solved in strongly

polynomial time!

28

Analysis of Dinitz-Edmonds-Karp

Modern Approach to Maximum Flow

View the problem as a problem of finding a point in the intersection of two convex sets.

“push relabel” approach to max flow

Enter continuous optimization [Christiano-Kelner-Madry-Spielman-Teng…]

[Chen-Kyng-Liu-Peng-ProbstGutenberg-Sachdeva’22]

< 𝑂 𝑚1=𝜖) for every 𝜖 > 0! A near-linear time algorithm!

𝑂(𝑛2𝑚) time algorithm

30

Minimum-cost Flows

• There can be multiple maximum
flows in a particular network

• What if we want to preference some
over others?

• Example: Bipartite matching allows
us to find whether a matching is
possible. If there are multiple, can
we also have preferences so that we
get the “best” matching?

𝑎

𝑏

𝑐

1

2

3

1

31

5

4

3

2

3

Min-Cost Flow

• We consider the same setting as before: A directed graph with
capacities.

• Edges now also have costs. Edge 𝑒 costs $(𝑒)

• The cost of an edge is per unit of flow. The total cost is

• Goal: Find maximum flow of minimum cost

• Note: Other variants of the problem exist. E.g., you might want the
minimum possible cost, regardless of the flow value (not maximum)

32

Min-Cost Flows

33

• Negative costs are allowed!

• Negative cycles are also allowed!!

• However, some algorithms don’t work.

• Assume that there is no infinite capacity negative cycle (or the cost is −∞)

Assumptions

• The residual network is a powerful tool. Let's keep using it

• We define the residual capacities and residual costs

𝑐𝑓 𝑢, 𝑣 =

S𝒇 𝒖, 𝒗 =

34

The residual network

35

• Ford-Fulkerson finds a maximum flow (ignoring costs completely)

• What is a natural way to choose the augmenting paths?

• Find a cheapest augmenting path.

• Use Bellman-Ford to find the augmenting paths (why not Dijkstra?)

• Requires no negative cycles in the input network!

• Assume integer capacities as well for termination

An Augmenting Path Algorithm

36

• We need two things:

• Question 1: Does the algorithm terminate?

• Question 2: Does it give a minimum-cost flow?

To answer Question 1, we need to prove that 𝑮𝒇 never contains a

negative-cost cycle! (Or the cheapest path would be undefined).

An Augmenting Path Algorithm

Theorem: Given a network 𝐺 and flow 𝑓 such that 𝐺𝑓 contains no

negative-cost cycles, if we augment a cheapest path, then the result still has

no negative-cost cycles.

Lemma: Augmenting a cheapest path does not decrease the cost of the

cheapest 𝑠-𝑡 path in the residual network.

37

A Powerful Lemma

𝑠 𝑣𝑢 𝑡𝑮𝒇′

Lemma: Augmenting a cheapest path does not decrease the cost of the

cheapest 𝑠 − 𝑡 path in the residual network.

Let 𝑐 𝑣 = cost of cheapest 𝑠 → 𝑣 path in 𝐺𝑓 (before augmenting)

AFSOC that after augmenting, ∃ an 𝑠-𝑡 walk cheaper than 𝑐 𝑡

38

A Powerful Lemma

So, S𝑓′ 𝑢, 𝑣 must have changed! What is it?

𝑠 𝑢𝑣 𝑡𝑮𝒇

39

A Powerful Lemma

Theorem: Given a network 𝐺 and flow 𝑓 such that 𝐺𝑓 contains no negative-cost cycles, if

we augment a cheapest path, then the result still has no negative-cost cycles.

Lemma: Augmenting a cheapest path does not decrease the cost of the cheapest 𝑠-𝑡 path in

the residual network.

Corollary: The cheapest augmenting path algorithm terminates!

40

A Powerful Lemma

• Similar analysis to Ford-Fulkerson

Theorem: Cheapest augmenting paths runs in 𝑂(𝑛𝑚𝐹) time

• Its just Ford-Fulkerson using Bellman-Ford at each iteration.

• Bellman-Ford costs 𝑂 𝑛𝑚 and each iteration adds at least 1 flow

• So, the algorithm runs in O 𝑛𝑚𝐹

41

Cheapest Augmenting Paths: Total Cost

42

Takeaways

• Maximum flow can be solved in polynomial time (near-linear time as of 2022)!

• Dinitz-Edmonds-Karp (shortest augmenting paths) runs in𝑂(𝑚2𝑛) time.

• Powerful modeling tool.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Applications
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Minimum-cost Flows
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

