COS330: Great Ideas in Theoretical Computer Science Fall 2025

Lecture 4: Network Flows

P Review of Max Flow/Min Cut and Ford Fulkerson
P Dinitz-Edmonds-Karp Algorithm
> Application to Bipartite Matching

)
Resources

» CLRS, Introduction to Algorithms
» Erikson, .Algorithms

P CMU 15-451, Introduction to Algorithms, Neswork Flows 1 and 2

PRINCETON
@ ‘ COMPUTER SEIENBE

Network Flow

/3
Motivation (Flow network): Consider a /4 # ’ N /2
network of pipes, each able to handle a certain

number of liters of water per minute. Definition (Value of a flow): The va/ue of a flow
< is the net flow leaving s

How much water can you send from S to t?

/2
Definition (Flow network): A directed graph with 0 @

* Edge capacities c(u, v)

Problem (Maximum flow): Find a feasible flow
* A sourcevertex S with the maximum possible value of all such flows.

e A sinkvertext

Definition (A flow): A quantity of flow on each
edge, f: E — R, called /cas/b/eif:

* Conservation: Flow in = Flow out Vv € {s, t}

* Capacity: 0 < f(u,v) < c(u,v)

Improving a tlow: s-t paths

* Is the tlow on the right optimal?

(pneidex e Fﬂﬂ/\-’

Pwv by 1 »
Fow Cw\\?e,\f\/aulnmaﬁ ¢ ch\/,qu-
Cacl %@, mJﬁ\m/{aﬁk}ulM\z (uﬁﬁmi C@?% > |

Certifying Optimality: s-t cuts

* Is the tlow on the right optimal?

Definition (s-t Cut): An 5-f cutisa 3/3

partition of the vertices into two disjoint sets

(S,T)such thats € Sandt € T

Definition (Capacity): The capacisyof an s-t
cut (5, T) is the total capacity on edges (u, v)
whereu € Sand v € T: 2/2

cap(S,T) = Z Z c(u,v)

UES veET

Net Flow Across a Cut

Definition (Net flow): The ¢ f/ov across an
s-t cut (5, T) is the amount of flow moving

from S to T:
FED =) D f@n =Y Y fou
Uu€eS veT UueS veT

Observe: The value of a flow (which we
defined as the net flow out of S) 1s the net
flow across the cut ({s},V \ {s})

Theorem: For any s-t cut (5, T), the net flow . N
across the cut equals the value of the flow! Pri OQ/['. A{geb ra using the d?/(z‘mﬁo”&

Net Flow Theorem

Definition (Capacity): The capacisyofan s-t
cut (5, T) is the total capacity on edges (u, V)

f(S,T) < cap(S, T) wheret € Sand v € T:

cap(S,T) = z Z c(u,v)

UES veT

Theorem: For any s-t cut (S5, 7T):

fesm=Z £ wif“@

[

oy N4 Ui Definition (Net flow): The ner flowacross an
< — ST s-t cut (5, T) is the amount of flow moving
- ZM;\IC‘C’MN) Cﬁ‘? (|) from S to T
Corollary: max-flow < min-cut f(S,T) = Z Z flu,v) — Z Z fw,u)
U€ES veT U€ES veT
Proof:

On %\«DO/" W\M%Démmzcuﬂj Mj Cods

How does greedy do?

RS {low Qk@ jojgd\ eﬁ\%ﬁj ngh% —LE e, o
Hron thevels mo poth St~

— Ao
i Ve n
C/WPD‘U’%/ C t%u%mfé_o oWV

f\n/\i;l-mk&g -

The residual graph

Definition (residual capacity): An edge (U, V)
with capacity c(u, v) and current flow
fu, V) has residual capacity

_c (wv)—f(uv), (u,v) EE
GWv) = e, () €E < __

Definition (tesidual network): Given a flow
network G and a current flow [, the residial
network Gr is a flow network whose
capacities are the residual capacities C¢ (V)

Augmenting Paths

Definition (augmenting path): An
augmenting pathis a path from s to t of non-
zero capacity in the residual network.

Key idea (reverse edges): Augmenting along a
reverse edoe removes that amount of flow
from the edge.

The Ford-Fulkerson Algorithm

Algorithm (Ford-Fulkerson):
While
o A mu\lr'l \:m,Uwv
", .
Cfrde wgt\jﬁ DFS ov BFS)
w4 %KDIQ\"Dib‘

K,
Les Ford Delbert Fulkerson

10

Flow network G Residual network G

11

Flow network G Residual network G

12

Flow network G Residual network G

13

Flow network G Residual network G

14

Theorem (maximality): If all capacities are integers, Ford-Fulkerson finds a flow
whose value 1s equal to the capacity of the minimum cut.

Proof: Ten A Fuddeeison 3\—51;,3 S Y&SHMV\M kelhes nO S;fm

S| s, TRV ";’Zjb?‘www el
(_{\,l)'e-e/ y W f) s
\’ch’l a:j y JZ\JM\E/ veachalle.

'Fan’\ &

V@ﬁﬁiuﬁdt V\Ei(ﬂy‘/k‘j (_Mj\!')":' C,CLHY)* S “u
So \me,w:/oP %ﬁoof—'} Ne)c’%(cw alyDsSs Lt (ST)

— = _ Z cCcuN) = (s)
= v codrsy SY) Tan e cotte) Cop S

Theorem (runtime): If all capacities are integers, Ford-Fulkerson runs in O(mF)
time, where F is the value of the maximum s-t flow.

+ “?(DLQ e,a.é/(f\, iﬁiyﬂ %Y

= < F Jenmbons
E@\m {_3(oA {pkes OUVC m) = OU~)
St/ & s Conneckad CWLOGD-

Proof:

16

Analysis: Max-Flow = Min-Cut

Corollary (/\in-cur Max-flow theorern): If the capacities are all integers, for
any flow network, the value of the maximum s-t flow 1s equal to the capacity of
the minimum S-t cut

17

Theorem (Integral flows): If the capacities are all integers, for any flow network
with integer capacities, there exists a maximum flow in which the flow on every edge
is an integer

Proof:

WI%G\DS‘ 2wt _'Féw‘ca'-F_uL@VSm SL\O‘Q_S'

18

Applications

Bipartite Matching

Problem (Bipartite matching): Given a bipartite graph G, find a largest possible set

of edges with no endpoints in common.

_ Veduce DI
W W% Gro-l?p Slot Flow 7 So(krt,wemé
{ a e i’; ‘Qb\-\) D (W
T Ty e
ESA .
oA

a ol e%gao 5@% =/
O

Reducing bipartite matching to max-tlow

Important (flow model proofs): When modeling problems with flow, you need to
prove that the reduction 1s correct! This usually consists of a bidirectional proof.

Claim #1 Given a matching M in the original graph, there exists a flow f v U+l
in our flow network of value| M| (max flow = max-matching)
S -+

-?CU\LVDT"l \J« CupHEe M. .
X g-ujq &LW(_WMWM

g‘o; Wmm@ Owa]l"\fmh(:f %:9_7* 21

Reducing bipartite matching to max-tlow

Important (flow model proofs): When modeling problems with flow, you need to
prove that the reduction 1s correct! This usually consists of a bidirectional proof.

Claim #2: Given a flow | in our flow network, there exists a matching M
of size | f| in the original graph (= max-flow < max-matching)

b= 5w (S0 =1 Tl ths el

22

Back to running time analysis for Ford-Fulkerson

I heorem: Ford-Fulkerson runs in O (111/) time (with integer capacities)

Also Theorenr: This bound 1s tight " ow many)
o ol= | B O _
o (e \o enndions ¢
' @,‘\(% ok
7 Hre

Can we make 1t faster?

* Ford-Fulkerson finds azy augmenting path until there are none left

* Idea: Canwe find “good” augmenting paths that guarantee a better
running time? Yes!

* Idea #1: g\f\w l’&s\/ Obl/fvv\w'L‘ﬁ Fp\h\/S
e Idea #2: U NI\VAV \;;O‘H’LMQ Fnﬂ’\é

24

Dinitz-Edmonds-Karp: Shortest Augmenting Paths

* When we described Ford-Fulkerson, we found any augmenting path,
(usually DFS is the simplest possible implementation)

Algorithm (Dinitz-Edmonds-Karp): Implement Ford-Fulkerson by finding
shortest augmenting paths (e.g., using BIS) at each iteration.

s e M |l

o Sl :
<2 AR~ ||H -
S -
X 3 { ;
B A ra y] : R
e 2

25

Dinitz-Edmonds-Karp: Shortest Augmenting Paths

* When we described Ford-Fulkerson, we found any augmenting path,
(usually DFS is the simplest possible implementation)

Algorithm (Dinitz-Edmonds-Karp): Implement Ford-Fulkerson by finding
shortest augmenting paths (e.g., using BIS) at each iteration.

Theoren: Dinitz-Edmonds-Karp runs in O(nm?) time (poly time!)

1\/@ A%MQE/ Qi F:f

‘*‘ Dee We;i_ Le,ok@ﬁ.fe/

Analysis of Dinitz-Edmonds-Karp

Lemma: Let d be the distance from S to t in the residual graph G.
During Dinitz-Edmonds-Karp, d never decreases.

,’M\
-~ A -"'d RS
O w V0

Ay = Wl

27

Analysis of Dinitz-Edmonds-Karp

Lemmea: After m iterations, d must increase.

Acin gge/ Comn @ﬂta_ unskuvatie m{—[/c«;\(

A A (NeASEST # av i Hme b > D’I)CMEL‘L\SV!S dao

Conclusiorr. > ot A‘”‘?‘“"L on u\‘ou,b’ umloevs
e Kach iteration takes: OU“ el Ers s

* Iterations per value of d: O(}""\B can be solved i

. polynomial time!
* d can increase: YL

Orm) .

Modern Approach to Maximum Flow

“push relabel” approach to max tlow

0 (n“m) time algorithm

Enter continuous optimization [Christiano-Kelner-Madry-Spielman-Teng...]

View the problem as a problem of finding a point in the intersection of two convex sets.

[Chen-Kyng-Liu-Peng-ProbstGutenberg-Sachdeva’22]

<0 (mlze)) for every € > 0! A near-linear time algorithm!

Minimum-cost Flows

Min-Cost Flow

* There can be multiple maximum
flows in a particular network

* What 1f we want to preference some
over others?

* Example: Bipartite matching allows
us to find whether a matching is
possible. If there are multiple, can
we also have preferences so that we
get the “best” matching?

31

Min-Cost Flows

* We consider the same setting as before: A directed graph with
capacities.

* Edges now also have cosrs. Edge e costs $(e)

* The cost of an edge 1s per unit of flow. The total cost 1s

e Goal Find maximum flow of minimum cost

* Note: Other variants of the problem exist. E.g., you might want the
minimum possible cost, regardless of the flow value (not maximum)

32

Assumptions

* Negative costs are allowed!

* Negative cycles are also allowed!!

* However, some algorithms don’t work.
* Assume that there 1s no infinite capacity negative cycle (or the cost 1s —0)

33

The residual network

* The residual network 1s a powerful tool. Let's keep using it

* We detine the residual capacities and residual costs

cr(u,v)=

Se(u,v) =

34

An Augmenting Path Algorithm

* Ford-Fulkerson finds a maximum flow (ighoring costs completely)

* What is a natural way to choose the augmenting paths?

* Find a cheapest augmenting path.
* Use Bellman-Ford to find the augmenting paths (why not Dijkstra?)
* Requires no negative cycles in the input network!

* Assume integer capacities as well for termination

35

An Augmenting Path Algorithm

* We need two things:
* Question 1: Does the algorithm terminate?
* Question 2: Does it give a minimum-cost flow?

To answer Question 1, we need to prove that G never contains a
negative-cost cycle! (Or the cheapest path would be undefined).

36

A Powerful Lemma

Theorem: Given a network G and flow f such that G contains no
negative-cost cycles, if we augment a cheapest path, then the result still has
no negative-cost cycles.

Lemma: Augmenting a cheapest path does not decrease the cost of the
cheapest s-t path in the residual network.

37

A Powerful Lemma

Lemma: Augmenting a cheapest path does not decrease the cost of the
cheapest s — t path in the residual network.

Let c(V) = cost of cheapest S — U path in G (before augmenting)
AFSOC that after augmenting, 3 an S-t walk cheaper than € (t)

THO Y% O (D~

38

A Powerful Lemma

So, S (U, V) must have changed! What is it?

Gt (O () (I~

39

A Powerful Lemma

Lemma: Augmenting a cheapest path does not decrease the cost of the cheapest s-t path in
the residual network.

4

Theorenr: Given a network G and flow f such that Gf contains no negative-cost cycles, if

we augment a cheapest path, then the result still has no negative-cost cycles.

4

Corollary: The cheapest augmenting path algorithm terminates!

40

Cheapest Augmenting Paths: Total Cost

* Similar analysis to Ford-Fulkerson

I'heorenr: Cheapest augmenting paths runs in O(nmkF) time

* Its just Ford-Fulkerson using Bellman-Ford at each iteration.
* Bellman-Ford costs O(nm) and each iteration adds at least 1 flow

* So, the algorithm runs in O(nmF)

41

Takeaways

 Maximum flow can be solved in polynomial time (near-linear time as of 2022)!
* Dinitz-Edmonds-Karp (shortest augmenting paths) runs in O(m?n) time.

* Powerful modeling tool.

42

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Applications
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Minimum-cost Flows
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

