
COS330: Great Ideas in Theoretical Computer Science Fall 2025

Lecture 3: Divide and Conquer and FFT

 Learn/review Divide and Conquer

Fast Fourier Transform: The Magical Algorithm

Resources

 CLRS, Introduction to Algorithms, Chap 30

Erikson, Algorithms, Chapter A online

CMU 15-451, Introduction to Algorithms, Fast Fourier Transform

2

Divide and Conquer: Easy like 1,2,3

1. Divide: the problem instance into smaller subinstances

2. Recurse: to solve each subinstance recursively

3. Combine: subsolutions into a solution for the original instance

3

Canonical Example: Merge Sort

Input: list of unsorted integers.

Goal: list in the sorted order.

4

Canonical Example: Merge Sort

Input: list of unsorted integers.

Goal: list in the sorted order.

function MergeSort (list L) {
if (|L| = 1) then return L
else {

let 𝐿ℓ  left half of L
let 𝐿𝑟  right half of L
let sorted-𝐿ℓ MergeSort (𝐿ℓ)
let sorted-𝐿𝑟 MergeSort (𝐿𝑟)

return combine(sorted-𝐿ℓ, sorted-𝐿𝑟)
}

}

5

Running Time Recurrences

𝑇(𝑛)  running time on instances of size n

Goal: express 𝑇(𝑛) recursively in terms of 𝑇 𝑘 for 𝑘 < 𝑛

6

Merge Sort Runtime Recurrence

𝑇(𝑛)  running time on instances of size n

𝑇 𝑛 ≤ 2𝑇
𝑛

2
+ 𝑐𝑛

𝑇 1 = 𝑂(1)

7

Analyzing the recurrence

𝑇 𝑛 ≤ 2𝑇
𝑛

2
+ 𝑐𝑛 𝑇 1 = 𝑂(1)

8

Analyzing the recurrence

𝑇 𝑛 ≤ 2𝑇
𝑛

2
+ 𝑐𝑛 𝑇 1 = 𝑂(1)

9

Another recurrence

𝑇 𝑛 ≤ 2𝑇
𝑛

2
+ 𝑐𝑛2

10

Anotherrrrrrr recurrence

𝑇 𝑛 ≤ 2𝑇 𝑛 − 1

The Fast Fourier Transform

“the most important numerical algorithm of our lifetime” –Gilbert Strang

Top 10 algorithms of the 20th century

(IEEE Computing in Science and Engineering)

Signal processing (audio processing, tuning, synthesis, noise reduction)

“multiplexing” in wireless communications (OFDM protocol)

MRI Imaging, EEG/ECG analysis, DNA sequence analysis

Image compressions/filters/enhancements

Detecting pulsars, seismic activity,…

https://en.wikipedia.org/wiki/Numerical_algorithm

12

The Fast Fourier Transform

13

The Fast Fourier Transform

We will see it as part of a method to multiply two polynomials super fast.

“converts a sliding sum of products into a single product”

14

But first…

“the tastiest dishes have a pinch (or even a handful) of an important ingredient”

•Uniquely described by its coefficients 𝑐𝑑 , 𝑐𝑑−1, … , 𝑐1, 𝑐0

15

Review: Polynomials

Definition: A polynomial of degree d is a function 𝑝 of the form:

𝑝 𝑥 = 𝑐𝑑𝑥𝑑 + 𝑐𝑑−1𝑥𝑑−1 + ⋯ + 𝑐0

•Uniquely described by its value at 𝑑 + 1 distinct points (the
unique reconstruction theorem aka the fundamental theorem of
algebra)

Given polynomials 𝐴(𝑥) and 𝐵(𝑥),

𝐴 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑑𝑥𝑑

= 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ + 𝑏𝑑𝑥𝑑

= 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ 𝑐2𝑑 𝑥2𝑑

𝐵 𝑥

Their product is
𝐶 𝑥

where

𝑐𝑘 = ෍

0≤𝑖,𝑗≤𝑑:𝑖+𝑗=𝑘

𝑎𝑖𝑏𝑗

Review: Multiplying Polynomials

• 𝑖2 = −1 (this is a definition!)

• Fundamental fact: every polynomial equation has a

solution over the complex numbers! Not true over reals.

Definition: Complex numbers are all numbers of the form
𝑎 + 𝑏𝑖 where i is a root of unity.

17

Review: Complex Numbers

• Can also write 𝑒
2𝜋𝑖𝑘

𝑛 = 𝑒
2𝜋𝑖

𝑛

𝑘

• There are exactly 𝑛 complex 𝑛th roots of unity, given by 𝑒
2𝜋𝑖𝑘

𝑛 .

Definition: An 𝒏𝐭𝐡 root of unity is an 𝑛th root of 1, i.e.,

𝜔𝑛 = 1

Roots of Unity: Magical Complex Numbers

• The number 𝑒
2𝜋𝑖

𝑛 is called a primitive 𝒏𝐭𝐡 root of unity

•Definition: Formally, 𝜔 is a primitive 𝑛th root of unity if

𝜔𝑛 = 1
𝜔𝑘 ≠ 1 for 0 < 𝑘 < 𝑛

19

Primitive Roots of Unity

20

𝟐𝐧𝐝 roots of
unity

𝟒𝐭𝐡 roots of
unity

𝟖𝐭𝐡 roots of
unity

Primitive Roots of Unity

•Directly using the definition of the product of two polynomials
would give us an 𝑂(𝑑2) algorithm

•Karatsuba can bring this down to 𝑂(𝑑1.58)

•What if we used a different representation?

A: 𝑨 𝒙𝟎

B: 𝑩 𝒙𝟎

C: 𝑪 𝒙𝟎 , 𝑪 𝒙𝟏 , 𝑪 𝒙𝟐 , … , 𝑪 𝒙𝒅

, 𝑨 𝒙𝟏 , 𝑨 𝒙𝟐 , … , 𝑨 𝒙𝒅 , … , 𝑨 𝒙𝟐𝒅

, 𝑩 𝒙𝟏 , 𝑩 𝒙𝟐 , … , 𝑩 𝒙𝒅 , … , 𝑩 𝒙𝟐𝒅

, … , 𝑪 𝒙𝟐𝒅

21

Back to Polynomial Multiplication

1. Pick 𝑁 = 2𝑑 + 1 points 𝑥0, 𝑥1, … , 𝑥𝑁−1

2. Evaluate 𝐴 𝑥0 , 𝐴 𝑥1 , 𝐴 𝑥2 , … , 𝐴(𝑥𝑁−1), 𝐵 𝑥0 , 𝐵 𝑥1 , 𝐵 𝑥2 , … , 𝐵(𝑥𝑁−1)

3. Compute 𝐶 𝑥0 , 𝐶 𝑥1 , … , 𝐶(𝑥𝑁−1)

4. Interpolate 𝐶 𝑥0 , 𝐶 𝑥1 , … , 𝐶(𝑥𝑁−1) to get the coefficients of 𝐶

Fast Polynomial Multiplication

How do we do steps 2 and 4 efficiently???FFT!

To Point-Value Form

• Consider the polynomial 𝐴 of degree 7

𝐴(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + 𝑎6𝑥6 + 𝑎7𝑥7

• Suppose we want to evaluate 𝐴(1) and 𝐴(−1)

𝐴(1) = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7

𝐴(−1) = 𝑎0 − 𝑎1 + 𝑎2 − 𝑎3 + 𝑎4 − 𝑎5 + 𝑎6 − 𝑎7

𝐴even

𝐴odd

How to make it recursive…

• Consider the polynomial 𝐴 of degree 7

𝐴(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + 𝑎6𝑥6 + 𝑎7𝑥7

•What if we split in half (like last slide) but keep it as a polynomial?

(𝑥)= 𝑎0 + 𝑎2𝑥 + 𝑎4𝑥2 + 𝑎6𝑥3

(𝑥)= 𝑎1 + 𝑎3𝑥 + 𝑎5𝑥2 + 𝑎7𝑥3

𝑍 = 𝑎0 + 𝑎2 + 𝑎4 + 𝑎6

𝑊 = 𝑎1 + 𝑎3 + 𝑎5 + 𝑎7

𝐴(𝑥) =

𝐴 𝑥 = 𝐴even 𝑥2 + 𝑥 𝐴odd(𝑥2)

• This formula gives us a key ingredient for divide-and-conquer

•We want to evaluate an 𝑁-term polynomial at 𝑁 points

• Break into 2 𝑁/2-term polynomials…

…and evaluate at 𝑁/2 points

• Combine the two halves using the formula above

Let’s divide and conquer!

26

•We need to evaluate the two “even” and “odd” polynomials on the

squares of the N points to implement our plan.

We might be in a pickle still…

• So, it seems like we need to evaluate the smaller degree polynomials at

N points still… 

• Idea: choose a structured set of N evaluation points so that the

squares of the points form a set of
𝑁

2
points…

That should sound insane!

• Recall the 𝑛th roots of unity over the complex field are

𝜔𝑘 for 𝑘 = 0,1, … , 𝑛 − 1

where 𝜔 = 𝑒
2𝜋𝑖

𝑛 is our “primitive” 𝑛th root of unity

27

Roots of unity to the rescue!

Magical Idea 1: Suppose N is a power of 2. Squares of N-th roots of

unity are (N/2)-th roots of unity!

•Assume 𝑁 is a power of two (pad with zero coefficients)

•Choose 𝒙𝟎, 𝒙𝟏, … , 𝒙𝑵−𝟏 to be 𝑵𝐭𝐡 roots of unity

• In other words, set 𝜔 = exp(
2𝜋𝑖

𝑁
) then set 𝑥𝑘= 𝜔𝑘

• To evaluate 𝐴(𝑥) at 𝜔0, 𝜔1, 𝜔2, … , 𝜔𝑁

• Break into 𝐴even(𝑥) and 𝐴odd(𝑥)

•Evaluate those at 𝜔0, 𝜔2, 𝜔4, …

• Combine using 𝐴 𝜔𝑘 = 𝐴𝑒𝑣𝑒𝑛 𝜔2𝑘 + 𝜔𝑘𝐴𝑜𝑑𝑑(𝜔2𝑘)

The
𝑵

𝟐
𝒕𝒉 roots of unity!!!

28

Fast Fourier Transform: Coeff to Point-Value

FFT(𝑎0, 𝑎1, … , 𝑎𝑁−1 , 𝜔, 𝑁) = { // Returns F = [𝑨(𝝎𝟎), 𝑨(𝝎𝟏), … , 𝑨(𝝎𝑵−𝟏)]

if 𝑁 = 1 then return

𝐹even ← FFT(

𝐹odd ← FFT(

𝑥 ← 1 // 𝒙 stores 𝝎𝒌

= 𝑨𝐞𝐯𝐞𝐧 𝝎𝟐𝒌 + 𝝎𝒌 𝑨𝐨𝐝𝐝(𝝎𝟐𝒌)for 𝑘 = 0 to 𝑁 − 1 do { // Compute 𝑨 𝝎𝒌

𝐹 𝑘 ←

𝑥 ← 𝑥 × 𝜔 // In practice, beware rounding

errors…

} return 𝐹

} 29

30

Back to multiplication

1. Pick 𝑁 = 2𝑑 + 1 points 𝑥0, 𝑥1, … , 𝑥𝑁−1

2. Evaluate 𝐴 𝑥0 , 𝐴 𝑥1 , 𝐴 𝑥2 , … , 𝐴(𝑥𝑁−1), 𝐵 𝑥0 , 𝐵 𝑥1 , 𝐵 𝑥2 , … , 𝐵(𝑥𝑁−1)

3. Compute 𝐶 𝑥0 , 𝐶 𝑥1 , … , 𝐶(𝑥𝑁−1)

4. Interpolate 𝐶 𝑥0 , 𝐶 𝑥1 , … , 𝐶(𝑥𝑁−1) to get the coefficients of 𝐶

•Given 𝐶 𝜔0 , 𝐶 𝜔1 , … , 𝐶(𝜔𝑁−1) where 𝑁 = 2𝑑 + 1

•We want to get the 𝑁 coefficients of 𝐶(𝑥) back

•We’re going to do it with…

…math!

31

Inverse FFT: Point-Value to Coefficients

Observation: Evaluating a polynomial at a point can be

represented as a vector-vector product:

Observation: Evaluating a polynomial at a set of points can be
represented as a matrix-vector product

Inverse FFT

Real life still of GPUs at an LLM startup working hard to compute matrix-vector products.

Observation: Evaluating a polynomial at a set of points can be
represented as a matrix-vector product

1 𝑥0

1 𝑥1

1 𝑥2

⋮ ⋮

0

1𝑥
2

0𝑥2 𝑥𝑁−1

1𝑥
𝑁−1

𝑥2

…

…

…2

⋮

𝑥𝑁−1
2

⋮

1 𝑥𝑁−1 𝑥2 …𝑁−1 𝑁−1

⋱
𝑥𝑁−1

0

𝑎1

⋮ =

𝑎 𝐴(𝑥)0

𝐴(𝑥1)

𝑎𝑁−1 𝐴(𝑥𝑁−1)

⋮

Inverse FFT

We need to “invert” this operation. When can we do this?

Observation: Evaluating a polynomial at a set of points can be
represented as a matrix-vector product

1 𝑥0

1 𝑥1

1 𝑥2

⋮ ⋮

0

1𝑥
2

0𝑥2 𝑥𝑁−1

1𝑥
𝑁−1

𝑥2

…

…

…2

⋮

𝑥𝑁−1
2

⋮

1 𝑥𝑁−1 𝑥2 …𝑁−1 𝑁−1

⋱
𝑥𝑁−1

0

𝑎1

⋮ =

𝑎 𝐴(𝑥)0

𝐴(𝑥1)

𝑎𝑁−1 𝐴(𝑥𝑁−1)

⋮

Theorem: This matrix is invertible iff the 𝑥𝑖 are

distinct
34

Inverse FFT

𝐹𝐹𝑇 𝜔, 𝑁 =

1 1
1 𝜔

1 𝜔2

⋮ ⋮

1 …
𝜔2 …
𝜔4 …

⋮

1

𝜔𝑁−1

𝜔2(𝑁−1)

⋮

1 𝜔𝑁−1 𝜔2(𝑁−1) …

⋱
𝜔 𝑁−1 2

•Element in row 𝑘, column 𝑗, is 𝜔𝑘 𝑗
= 𝜔𝑘𝑗

• In our case, 𝑥𝑘 = 𝜔𝑘 where 𝜔 is a primitive 𝑁th root of unity, so

35

Inverse FFT

•Why are these numbers distinct?

𝐹𝐹𝑇 𝜔, 𝑁 =

1 1
1 𝜔

1 𝜔2

⋮ ⋮

1 …
𝜔2 …
𝜔4 …

⋮

1

𝜔𝑁−1

𝜔2(𝑁−1)

⋮

1 𝜔𝑁−1 𝜔2(𝑁−1) …

⋱
𝜔 𝑁−1 2

•Element in row 𝑘, column 𝑗, is 𝜔𝑘 𝑗
= 𝜔𝑘𝑗

• In our case, 𝑥𝑘 = 𝜔𝑘 where 𝜔 is a primitive 𝑁th root of unity, so

36

Inverse FFT

•Why are these numbers distinct?

Magical Idea 2: FFT Matrix is invertible on powers of a primitive N-th

root of unity!

What is the product of 𝐹𝐹𝑇 𝜔, 𝑁 × 𝐹𝐹𝑇(𝜔−1, 𝑁)? The (𝑘, 𝑗) entry is

Magical Idea 3: Inverse of the FFT is an FFT on inverse eval points!

𝐹𝐹𝑇(𝜔−1, 𝑁)

37

Inverse FFT

38

Inverse FFT

• Entry (𝑘, 𝑗) of 𝐹𝐹𝑇 𝜔, 𝑁 × 𝐹𝐹𝑇(𝜔−1, 𝑁) is:

෍

𝑠=0

𝑁−1

𝜔−𝑘𝑠𝜔𝑠𝑗

• How do the diagonal (i.e., 𝑘 ≠ 𝑗) entries of the product look?

39

Inverse FFT

• Entry (𝑘, 𝑗) of 𝐹𝐹𝑇 𝜔, 𝑁 × 𝐹𝐹𝑇(𝜔−1, 𝑁) is:

෍

𝑠=0

𝑁−1

𝜔−𝑘𝑠𝜔𝑠𝑗

• How do the off-diagonal (i.e., 𝑘 ≠ 𝑗) entries of the product look?

• So, we’ve just showed that

𝐹𝐹𝑇 𝜔, 𝑁 × 𝐹𝐹𝑇 𝜔−1, 𝑁 =

𝑁 0 0
0 ⋱ 0
0 0 𝑁

= 𝑁 0
1 0 0

⋱ 0
0 0 1

• Therefore

𝐹𝐹𝑇−1 𝜔, 𝑁 =

40

Inverse FFT

41

Back to multiplication

1. Pick 𝑁 = 2𝑑 + 1 points 𝑥0, 𝑥1, … , 𝑥𝑁−1

2. Evaluate 𝐴 𝑥0 , 𝐴 𝑥1 , 𝐴 𝑥2 , … , 𝐴(𝑥𝑁−1), 𝐵 𝑥0 , 𝐵 𝑥1 , 𝐵 𝑥2 , … , 𝐵(𝑥𝑁−1)

3. Compute 𝐶 𝑥0 , 𝐶 𝑥1 , … , 𝐶(𝑥𝑁−1)

4. Interpolate 𝐶 𝑥0 , 𝐶 𝑥1 , … , 𝐶(𝑥𝑁−1) to get the coefficients of 𝐶

Running Time:

42

• Switch between coefficient & point-value representations in

O(n log n) time!

The Magic of FFT

• Idea 1: Divide and Conquer

•Magic 1: Needed a set of points such that taking their squares shrinks the

set by half – roots of unity!

• Idea 2: Invert the Point-Value representation of the product.

Interpret FFT as matrix-vector product.

•Magic 2: Needed the FFT matrix to be invertible. Vandermonde shows

Matrix invertible iff eval points distinct.

• Idea 3: Compute the inverse-matrix-vector product to recover

coeff representation.

•Magic 3: The inverse matrix is also an FFT just at the inverses of the

original eval points.

43

FFT is super cool!

Takeaways

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: FFT(𝑎0, 𝑎1, … , 𝑎𝑁−1 , 𝜔, 𝑁) = { // Returns F = [𝑨(𝝎𝟎), 𝑨(𝝎𝟏), … , 𝑨(𝝎𝑵−𝟏)]
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

