COS330: Great Ideas in Theoretical Computer Science Fall 2025

Lecture 3: Divide and Conquer and FFT

P Learn/review Divide and Conquer
P Fast Fourier Transform: The Magical Algorithm

@)
@ Resources

» CLRS, Introduction to Algorithms, Chap 30
» Erikson, Algorithms, Chapter A online
» CMU 15-451, Introduction to Algotrithms, Fast Fourier Transform

PRINCETON o
@ ‘ COMPUTER SEIENBE'

Divide and Conquer: Fasy like 1,2)3

1. Divide: zhe problem instance into smaller subinstances
2. Recurse: 70 solve each subinstance recursively
3. Combine: subsolutions into a solution for the original instance

Canonical Example: Merge Sort

Input: list of unsorted integers.
Goal: list in the sorted order.

ok

Gt lc.{-l'\\aqr Cort \ri_a)H kaq—

Cidome

Canonical Example: Merge Sort

Input: list of unsorted integers.
Goal: list in the sorted order.

function MergeSort (list L) {

if (|L| =1) then returnL
else | ‘ (..I\)

let L, < left half of L
let L, < right half of L -TC’._)
let sorted-L, €MergeSort (L Ld

let sorted-L, €MergeSort (L 1(%)

return combine(sorted-L,, sorted-L,)
h
} \J

Running Time Recurrences

T(n) € running time on instances of size n

Goal: express T (n) recursively in terms of T(k) for k <n

Merge Sort Runtime Recurrence

T(n) € running time on instances of size n

T(n) < 2T (g) + cn

r(1) =0(1) Ll}:}kmlov'
" Yecurvene vobon Twga T

Fuck: oll vetwesobtbe fovm ")

Analyzing the recurrence

T(n) < 2T (g) +cen T(1)=0(1)

<2 .LZ.T(%')-\-C- -’-\i,)-\'C.n Cﬂ‘“"(“y“

wsk\{
= 4.T(5)t cnten I b"’"“
S 4(27 (—-—)t- & 54* cutin &ud“wu%

= 8T+ cux-q-cu\-\-cpt . l&:’:flf
N ° reed 4o

Analyzing the recurrence

T(n) < 2T (g) +cen T(1)=0(1)

n n TLO%
2 @.‘T’Lq:)-\-c >)¥en ‘agsuw
= 4.7(L) cntCn NS o
4— ch—)-" owu(og

< i 7_-‘—(_/__)1. C-L)+ intin |

C 5 1 V\&ALQ(gL
. wg i \SETE
< 2°T(L)+ v on 57D \etiakn
S (: i=log Lode ' vamove
2 ° =o(hnlosw) | atsumphon-

n 2

. 4 .t /-—l
< N A CW\ 1+ y-\-ya.- 2-
= Z T(— \ ;:g-jo('h ?.-Ml"l\ la)n.
< Note: “vede.- a2

Anotherrrrrrr recurrence

T(n) <2T(n—1) 1=\

n

S

The Fast Fourier 1ransform

“the most . The 60-Year Old Algorithm Underlying Today’s Tech > g

Developed by IBM and Princeton, FFT powers Al and 5G
Top 10 a wireless

(IEEE (BY KATHY PRETZ | 21 AUG 2025 | 5 MIN READ | []

Signal pr
“multiple:
MRI I

Image cos

Defecting

https://en.wikipedia.org/wiki/Numerical_algorithm

‘The Fast Fourier 1 ranstorm

KE)!

NACHLASS

THEORIA INTERPOLATIONIS

METHODO NOVA TRACTATA.

1.
Prosreva. Invenire summam seriei

o "
@—b)j@a—c)(@a—d)(a—e)... -+ B—a)(b—c)(b—d)(b—e)...

a
+ o ne=aE=a . T @=au=ha—a@=a..

o
+ —ae=te—a) (c—d)-rn + ete.
ubi a.b. ¢, d e sunt m quantitates diversae, atque n numerus integer quicunque
positivus, negativus sive etiam 0.
Solutin. Faciendo brevitatis caussa

An Algorithm for the Machine Calculation of
Complex Fourier Series

By James W. Cooley and John W. Tukey

An efficient method for the calculation of the interactions of a 2™ factorial ex-
periment was introduced by Yates and is widely known by his name. The generaliza-
tion to 3™ was given by Box et al. [1]. Good [2] generalized these methods and gave
elegant algorithms for which one class of applications is the caleulation of Fourier
series. In their full generality, Good’s methods are applicable to certain problems in
which one must multiply an N-vector by an N X N matrix which can be factored
into m sparse matrices, where m is proportional to log N. This results in-a procedure
requiring a number of operations proportional to N log N rather than N* These
methods are applied here to the calculation of complex Fourier series. They are
useful in situations where the number of data points is, or can be chosen to be, a
highly composite number. The algorithm is here derived and presented in a rather
different form. Attention is given to the choice of N. It is also shown how special
advantage can be obtained in the use of a binary computer with N = 2™ and how
the entire calculation can be performed within the array of N data storage locations
used for the given Fourier coefficients.

Consider the problem of calculating the complex Fourier series

N-1
m X(j) = ZAKR)W., j=0,1,. N=1,

The Fast Fourier 'Transform

We will see it as part of a method to multiply two polynomials super fast.

“converts a sliding sum of products into a single product”

e
Corvlubon

(Sowme q;t.\ral\'ow thalt qu C‘”“J“‘k"‘“'
M'YA rekwovies i M"""—)

13

But first...

“the tastiest dishes have a pinch (or even a handful) of an important ingredient”

Review: Polynomials

Definition: A polynomial of degree d is a function p of the form:

p(x) = cgx® + cy_1x* 1+ + ¢

* Uniquely described by its coetficients ¢4, C4—1, ..., C1, Cgo

* Uniquely described by its value at d + 1 distinct points (the
unlgue reconstruction theorem aka the fundamental theorem of

algebra)

F‘(O(D(— S uppose. Hheve ave b ci-L.BL\v\.r_t sz <d
ey p el s R pCe) = plosed

) = Q)

Than P (s @ Az(sot ok =t s
Zevo @ A+t C;L‘.sl\u

Review: Multiplying Polynomials

Given polynomials A(x) and B(x),
Al) = ap + a1x + ax? + - + agx?
BOX) = by + bix + box2 + -+ + bgx?

Their product 1s
C(x) = ¢y + c1x + Cox2 + ++- Cpgx2d

where

“e = Z 4 bj waku({awog

0<i,j<d:i+j=k

Review: Complex Numbers

Definition: Complex numbers are all numbers of the form
a + bi where i is a root of unity.

* > = —1 (this is a definition!)

* Fundamental fact: every polynomial equation has a
solution over the complex numbers! Not true over reals.

17

Roots of Unity: Magical Complex Numbers

Definition: An 12'" root of unity is an nt root of 1, i.e.,
w" =1

2Tk
* There are exactly n complex nt roots of unity, given by e n .

2mik 27u “

*Canalsowritee n = \en ?:rtlé oS LZ:I'(?‘F)

g;rcL s bg%:mlc)
/

Primitive Roots of Unity

271
* The number e n is called a primitive n'" root of unity

* Definition: Formally, w is a ptimitive n® root of unity if
w" =1
wk#1 for 0<k<n

\LV\JO S"WLL&VEM&YOQCD L3 1

19

Primitive Roots of Unity

(]
_}I
2nd roots of 4t roots of 8t roots of
unity unity unity

20

Back to Polynomial Multiplication

* Directly using the deﬁmtlon of the product of two polynomials
would give us an 0(d?) algorithm SR

* Karatsuba can bring this down to O(d!~9)

* What if we used a different representation?

A: A(x0),A(x1), A(x2), ..., A(xd), ..., A(x24) ﬂ(,m'-l:d

b 4 x x

B: B(x0), B(x1), B(x2), .., B(xa), .., B(x24) KW\LSWLN
\ 4

C: C(xp),C(x1),C(x2),...,C(xq) , ..., C(x2q)

21

Fast Polynomial Multiplication

1. Pick N = 2d + 1 points Xg, X1, ... , Xn—1
2° E”d/%dfeA(XO))A(xl)rA(xZ)) "')A(xN—l)l B(x()), B(xl), B(xz), vy B(xN—l)

3. Compute C(xo), C(xl), ey C(XN_]_)
4. Interpolate C(xg), C(x1), ..., C(xy_1) to get the coefficients of C

How do we do steps 2 and 4 efficie

T
A AT 1

"

OU NEED METO SAVEY

To Point-Value Form

* Consider the polynomial A of degree 7
A(x) = ag + a1x + axx? + azx3 + asx* + asx® + agx® + azx’
* Suppose we want to evaluate A(1) and A(—1)
A(l) =ap+ay+ay+azs+as+as+ag+ ay

A1) =ap—a1+a; —az+as —as+ag—ay

How to make 1t recursive...

* Consider the polynomial 4 of degree 7

A(X) = ag + a1x + axx? + azx3 + asx* + asx® + agx® + azx’

* What 1f we split in half (like last slide) but keep it as a polynomial?

Z=ap+ay;+as+as Aeven (X)= ag + azx + asx? + agx3
W=a+a3+as+ay Aodd ()= a1 + azx + asx? + a7x3

| A(x) = kWC)ﬁgf%'AwCﬁb) |

Let’s divide and conquet!

A(x) = Aeven (xZ) + X Aodd(xz)

* This formula gives us a key ingredient for divide-and-conquer
* We want to evaluate an N-term polynomial at N points
* Break into 2 N/2-term polynomials...
...and evaluate at N /2 points
* Combine the two halves using the formula above

We might be 1n a pickle still...

* We need to evaluate the two “even” and “odd” polynomials on the
squares of the N points to implement our plan.

* So, it seems like we need to evaluate the smaller degree polynomials at

N points still... ®

* Idea: choose a structured set of N evaluation points so that the

. N :
squares of the points form a set of - points...

26

That should sound insane!

Roots of unity to the rescuel!

* Recall the nth roots of unity over the complex field are

wk fork=01,..,n—1
27T1L

where @ = e n is our “primitive” n™ root of unity

27

Magical Idea 1:Suppose N is a power of 2. Squares of N-th roots of
unity are (N/2)-th roots of unity!

Fast Fourier Transform: Coeff to Point-Value

* Assume N is a power of two (pad with zero coefficients)

* Choose Xg, X1, ..., XN—1 to be Nt roots of unity

2Tl
* In other words, set w = exp (T) then set X = w*

* To evaluate A(x) at @°, w!, w?, ..., W"
* Break into Acven(X) and Aoqd(X) € The (g) th roots of unity!!!

e Evaluate those at w?, w?, w*, ...

* Combine using A(a)k) = Aeven(wZR) + kaodd(ka)

28

FFT([ao, a1, ..., an—1], @, N) = {
if N = 1 then return

2

Feven PFFT(r_%JQZ-J -*-*_;--3) O 9 H/z,)
2

Foy —FFT(L4 ,C3,-- - Dy D, NA)

x <1
fork =0toN —1do{

Flk] < ‘:EWLV\[\(“WQA %}*%?MEKW%S

X <X Xw

} return F

} 29

Back to multiplication

1. Pick N = 2d + 1 points Xo, X1, ... , XN—1
2- Eﬂd/ﬂdf@/l(xo),A(xl),A(xz), "')A(xN—l)l B(xO)) B(xl), B(xZ)J vy B(xN—l)

3. Compute C(xo), C(xl), “any C(xN—l)
4. Interpolate C(xy), C(x1), ..., C(xy_1) to get the coefficients of C

30

Inverse FFT: Point-Value to Coefficients

* Glven C((l)o), C((Ul), . C(wN—l) whete N = 2d + 1
* We want to get the N coefficients of C(x) back
* We’re going to do 1t with...

...math!

Observation: Evaluating a polynomial at a point can be
represented as a vector-vector product:

2 RN
C%O/ ’)clﬁx,)_) o,

_DC
Weovowta| '\/@C/%O\/ g JP ")

Inverse FFT

Observation: Evaluating a polynomial at a set of points can be

represented as a watrix-vector product —— % rrpstan
| __ wtalanat-

—— - pY ke V{:)

.

Real life stil] of GPUs at an ILM startup working hard to compute matrix-vector products.

Inverse FFT

Observation: Evaluating a polynomial at a set of points can be
represented as a watrix-vector product

i 2 N—1+ _ _
1 xo Xg Xo Ir ag - A(x0)
2 N—-1
1 X1 xl xl al A(xl)
1 x x5 xy—1 _
2 N—-1|Lay-1
1 XN—1 xN—l xN—l— N-1 -A(xN—l)

We need to “invert”’ this operation. When can we do this?
p

Inverse FFT

Observation: Evaluating a polynomial at a set of points can be
represented as a watrix-vector product

1 xo x(Z) x{)V—l- - ap - i A(xo)]
X1 x% x11V—1 a A(xl)
x)—1 _

34

Inverse FFT

* In our case, Xy = w* where w is a primitive N root of unity, so

1 1 1 .. 1
1 w w? .. wN-1
2 4 2(N-1)
FFT(w, N) = 1 a) w* .. W
1 N1 20v-1 | wN-1? |

. .. J :
* Element in row k, column j, is (a)k) = M

35

* Why are these numbers distinct?

Inverse FFT

* In our case, Xy = Wk where w is a primitive N® root of unity, so

1 1 1 .. 1
1 w w? .. w1
2 4 2(N—1)
FFT(w, N) = 1 a) a) W
1 V1 @20V-1H | wN=12]
* Element in row k, column j, is (a)k) a)k]

IFSISSHE S () > e
* Why are these numbers distinct? Rk > s FYle—lw_:,(QDI"“T) =0

Magical Idea Z: FFT Matrix is invertible on powers of a primitive N-th
root of unity!

Inverse FFT

Magical Idea 3: Inverse of the FFT is an FFT on inverse eval points!
FFT(w™!, N)

What is the product of FFT (w,N) X FFT(w™!, N)? The (k,) entry is

37

Inverse FFT

o Entry (k,j) of FFT(w,N) X FFT(w™%, N) is:

N-1
Z w—kswsj
s=0
* How do the diagonal (i.e., k # j) entries of the product look?
AL o5 oo
S=0o $=0o —

38

Inverse FFT

o Entry (k,j) of FFT(w,N) X FFT(w™%, N) is:

N—
Z —ks S]

. How do the off-diagonal (i.e., kK # J) entries of the product look?

@)@@5 _ (V= cj%@)s .\

Inverse FFT

* So, we’ve just showed that

N 0 0 1 0 0
FFT(w,N) x FFT(w-1,N) =0 =~ 0|=N|[0 - o]
0 0 N 0 0 1

* Therefore

FFT-1 (w,N) = ;l‘_, FET C@,j)[l\L)

40

Back to multiplication

1. Pick N =2d + 1 points X0y X1y ooe 3 XN—1 /? OCM (-*‘9 N)
2. Evalnate A(xy),A(x,),A(x5), ..., A(xy_1), B(xg), B(x1), B(x5), ..., B(xy_1)

3. Compute C(xo), C(x1), .., C(Xy_1) —) Oa\\)
4. Interpolate C(xg), C(x1), ..., C(xy—_1) to get the coefficients of C

7 OO
Running Time: O Q\\ | -9 Q) =g C& L?ﬂ A)

The Magic of FFT

* Switch between coefficient & point-value representations in
O(n log n) timel!
* Idea 1: Divide and Conquer

* Magic 1: Needed a set of points such that taking their squares shrinks the
set by half — roots of unity!

* Idea 2: [nvert the Point-Value representation of the product.
Interpret FFT as matrix-vector product.

* Magic 2: Needed the FET matrix to be invertible. 1V andermonde shows
Matrix invertible iff eval points distinct.

* Idea 3: Compute the inverse-matrix-vector product to recover
coetf representation. v

* Magic 3: The inverse matrix is also an FET just at the inverses of the
original eval points.

Takeaways

FFT is super cool!

43

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: FFT(𝑎0, 𝑎1, … , 𝑎𝑁−1 , 𝜔, 𝑁) = { // Returns F = [𝑨(𝝎𝟎), 𝑨(𝝎𝟏), … , 𝑨(𝝎𝑵−𝟏)]
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

