
COS330: Great Ideas in Theoretical Computer Science Fall 2025

Lecture 2: Dynamic Programming

Learn/review Dynamic Programming

 Keys: Memoization, Optimal substructure, overlapping subproblems

 Example applications

Resources

CLRS, Introduction to Algorithms, Chap 15/14 (3rd/4th ed.)

 Erikson, Algorithms, Chapter 3

 CMU 15-451, Introduction to Algorithms, Dynamic Programming I

Starter example: Counting steps

You can climb up the stairs in increments of 1 or 2 steps.

How many ways are there to jump up n stairs?

Can we solve this problem in terms of smaller subproblems?

function stairs(int n) {

 if (n <= 1) then return 1

 else {

 let waysToTake1Step  stairs(n-1)

 let waysToTake2Steps  stairs(n-2)

 return waysToTake1Step + waysToTake2Steps

 }

 }

Implementation #1

Issue: Exponentially many recursive calls!

dictionary<int, int>

memo

function stairs(int n) {

if (n <= 1) then return

1

if (n not in memo) {

}

return memo[n]

}

Implementation #2

Key Idea: Memoization

Don’t solve the same subproblem

twice! Store the result and reuse it!

Note: Memo dictionary

Need only an array 90% times.

stairs(n) = stairs(n-1) +

stairs(n-2)

When can we use DP?

We solved the “stairs” problem by using solutions to smaller

instances of the stairs problem.

Key Idea: Optimal substructure

We say that a problem has optimal substructure if the optimal solution

to the problem can be computed from optimal solutions to smaller

instances (subproblems!) of the problem.

When can we use DP?

stairs(n) = stairs(n-1) +

stairs(n-2)

The DP implementation is faster because each subproblem is

solved only once instead of exponentially many times.

Key Idea: Overlapping subproblems

Overlapping subproblems are subproblems that occur multiple

(typically, exponentially!) times throughout the recursion tree. This

is what distinguishes DP from ordinary recursion.

1. Identify a set of optimal subproblems

 write down a clear and unambiguous definition of subproblems

2. Identify the relationship between the subproblems

 write down a recurrence that gives the solution to a problem in terms of subproblems

3. Analyze the runtime

 usually (but not always!) #subproblems x by time taken to solve a subproblem

4. Select a data structure to store subproblems

 usually an array. sometimes more sophisticated like a hashtable.

5. Choose between bottom-up or top-down implementation

6. Write the code!

“Recipe” for Dynamic Programming

The Knapsack Problem

The Knapsack Problem

Input: a set of n items, the ith of which has size 𝒔𝒊 and value 𝒗𝒊.

Goal: find a subset of items with total size ≤ S, with max value.

Items A B C D E F G

Value 7 9 5 12 15 6 12

Size 3 4 2 6 7 3 5

S = 15

How would you solve the problem if you were allowed to pick fractional items?

The Fractional Knapsack Problem

Input: a set of n items, the ith of which has size 𝒔𝒊 and value 𝒗𝒊.

Goal: pick a fraction in [0,1] of each item with total fractional size

≤ S, with max value.

Items A B C D E F G

Value 7 9 5 12 15 6 12

Size 3 4 2 6 7 3 5

S = 15

Answer:

The Knapsack Problem

Input: a set of n items, the ith of which has size 𝒔𝒊 and value 𝒗𝒊.

Goal: find a subset of items with total size ≤ S, with max value.

Items A B C D E F G

Value 7 9 5 12 15 6 12

Size 3 4 2 6 7 3 5

S = 15

The integral version is harder.

Unless P=NP, no polynomial time algorithm can exist (i.e., the

problem is NP-hard).

The Knapsack Problem

Item
s

A B C D E F G

val 7 9 5 12 15 6 12

size 3 4 2 6 7 3 5

Issue:

• How do we know whether to include

a particular object X?

• We don’t know in advance, so must

try both choices and pick best one.

Optimal substructure:

• Every object is either

included or not.

• If an item X is included,

the remaining 𝑆 − 𝑠𝑖𝑧𝑒 𝑋

space is filled with some

subset of remaining items.

• This is a smaller instance

of knapsack!

Writing a recurrence

𝑉 𝑘, 𝐵 =

Key Idea: clever brute force

We could not know in advance whether to include the ith item or

not, so we tried both possibilities and took the best one.

Analyzing the runtime

Lemma: Our algorithm runs in time O(nS).

Why doesn’t this contradict (or prove P=NP ☺) what we discussed earlier?

Max-weight independent set in a tree (Tree DP)

Independent sets on trees (Tree DP)

Input: Tree on n vertices each with a non-negative weight 𝑤𝑣 .

Goal: Find an independent set of vertices with max total weight.

Definition (Independent Set): An independent set in a graph G on

vertex set V is a subset of vertices 𝑆 ⊆ 𝑉 such that no pair has an

edge between them.

Optimal substructure:

• A solution includes a root, or not.

• If the root is chosen, the remaining solution must

exclude root’s children (why?).

• Every child/grandchild subtree is just another smaller

instance of MWIS-in-a-tree

Analyzing the runtime

Theorem: MWIS on a tree can be solved in O(n) time.

Longest Increasing Subsequence

Longest Increasing Subsequence

Input: A sequence of n numbers 𝑎1, 𝑎2, … , 𝑎𝑛

Goal: find the longest strictly increasing subsequence.

Caution: a subsequence does not have to be contiguous!

7 0 4 3 10 11 17 15

Defining Subproblems

7 0 4 3 10 11 17 15

Optimal substructure:

• An LIS ending with the element 15 extends the LIS that…

Writing a recurrence

𝐿𝐼𝑆(𝑖) =

Answer:

Analyzing runtime

𝐿𝐼𝑆 𝑖 = 1 + max
𝑗∈[0,𝑖)
𝑎𝑗<𝑎𝑖

𝐿𝐼𝑆(𝑗)

Naïve runtime:

Can we do better?

This recurrence is taking the maximum value in a range.

Can we do this step more efficiently?

Optimizing LIS

7 0 4 3 10 11 17 15A:

𝐿𝐼𝑆 𝑖 = 1 + max
𝑗∈[0,𝑖)
𝑎𝑗<𝑎𝑖

𝐿𝐼𝑆(𝑗)

Optimized LIS: Sortedness of best

𝐿𝐼𝑆 𝑖 = 1 + max
𝑗∈[0,𝑖)
𝑎𝑗<𝑎𝑖

𝐿𝐼𝑆(𝑗)
𝑆𝑗 = 𝑝 𝐿𝐼𝑆 𝑝 = 𝑗}

𝑏𝑒𝑠𝑡 𝑗 = min 𝑆𝑗

Lemma: For every𝟏 ≤ 𝒋 ≤ 𝒕, 𝒃𝒆𝒔𝒕 𝒋 ≤ 𝒃𝒆𝒔𝒕[𝒋 + 𝟏]

𝐸 𝑗 : 𝐴 𝐸 𝑗 = 𝑏𝑒𝑠𝑡[𝑗]
= 1 + max

1≤𝑗≤𝑡:𝑏𝑒𝑠𝑡 𝑗 <𝐴[𝑖]
𝑗

Why does this help?

Optimized LIS: binary search!

𝐿𝐼𝑆 𝑖 𝑆𝑗 = 𝑝 𝐿𝐼𝑆 𝑝 = 𝑗}

𝑏𝑒𝑠𝑡 𝑗 = min 𝑆𝑗

Lemma: For every𝟏 ≤ 𝒋 ≤ 𝒕, 𝒃𝒆𝒔𝒕 𝒋 ≤ 𝒃𝒆𝒔𝒕[𝒋 + 𝟏]

𝐸 𝑗 : 𝐴 𝐸 𝑗 = 𝑏𝑒𝑠𝑡[𝑗]

= 1 + max
1≤𝑗≤𝑡:𝑏𝑒𝑠𝑡 𝑗 <𝐴[𝑖]

𝑗

→ Can compute the max above by binary search!

Optimized LIS: Pseudocode

function LIS(list A):

 Maintain t0, best, E []

 for 1 ≤ 𝑖 ≤ 𝑛, do:

 𝑠∗
 BinSearch (best[1:t],A[i])

 𝑗∗  E[𝑠∗] if 𝑠∗ ≠ 0, otherwise 𝑗∗
 0

 LIS[i]  1+𝑠∗

 if 𝐿𝐼𝑆 𝑖 > 𝑡, then:

 𝑡  t+1

 best[t] A[i]

 E[t]  I

 else if A[i] < best[LIS[i]], then:

 best[LIS[i]] A[i]

 E[LIS[i]]  i

return m = arg max LIS[1:n]

Optimized LIS: binary search!

Theorem: Optimized LIS runs in time O(n log n).

Key Takeaways

• Breaking a problem into subproblems is hard. Common patterns:

– Use the first k elements of the input?

– Restrict an integer parameter (e.g., knapsack size) to a smaller value?

– (for trees), can I solve the problem on each subtree (Tree DP)

– Solve the problem for a subset of inputs?

– Keep track of more information?

• Try a clever brute force approach

– Make one decision at a time and recurse, take the best thing that results.

– Think of this as “memoized backtracking”

• Use a clever data structure to speed up recurrence (SegTree DP!)

• Complexity Analysis is typically: #subproblems x time per subproblem

– But sometimes harder…

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

