

#### Lecture 2: Dynamic Programming

- ► Learn/review Dynamic Programming
- ► Keys: Memoization, Optimal substructure, overlapping subproblems
- Example applications



#### Resources

- ► CLRS, *Introduction to Algorithms*, Chap 15/14 (3<sup>rd</sup>/4<sup>th</sup> ed.)
- ► Erikson, *Algorithms*, Chapter 3
- ▶ CMU 15-451, Introduction to Algorithms, *Dynamic Programming I*



# Starter example: Counting steps

You can climb up the stairs in increments of 1 or 2 steps. How many ways are there to jump up n stairs?

Can we solve this problem in terms of smaller subproblems?

# Implementation #1

```
function stairs(int n) {
   if (n <= 1) then return 1
   else {
      let waysToTake1Step ← stairs(n-1)
      let waysToTake2Steps ← stairs(n-2)
      return waysToTake1Step + waysToTake2Steps
   }
}</pre>
```

Issue: Exponentially many recursive calls!

# Implementation #2

```
dictionary<int, int>
memo
function stairs(int n) {
 if (n \le 1) then return
 if (n not in memo) {
 return memo[n]
```

**Key Idea**: Memoization

Don't solve the same subproblem twice! Store the result and reuse it!

Note: Memo dictionary
Need only an array 90% times.

#### When can we use DP?

We solved the "stairs" problem by using solutions to *smaller* instances of the stairs problem.

$$stairs(n) = stairs(n-1) + stairs(n-2)$$

#### Key Idea: Optimal substructure

We say that a problem has *optimal substructure* if the optimal solution to the problem can be computed from optimal solutions to smaller instances (subproblems!) of the problem.

#### When can we use DP?

The DP implementation is faster because each subproblem is solved *only once* instead of *exponentially many times*.

$$stairs(n) = stairs(n-1) + stairs(n-2)$$

Key Idea: Overlapping subproblems

Overlapping subproblems are subproblems that occur multiple (typically, exponentially!) times throughout the recursion tree. This is what distinguishes DP from ordinary recursion.

# "Recipe" for Dynamic Programming

- 1. Identify a set of optimal subproblems
  - write down a clear and unambiguous definition of subproblems
- 2. Identify the relationship between the subproblems
  - write down a recurrence that gives the solution to a problem in terms of subproblems
- 3. Analyze the runtime
  - usually (but not always!) #subproblems x by time taken to solve a subproblem
- 4. Select a data structure to store subproblems
  - usually an array. sometimes more sophisticated like a hashtable.
- 5. Choose between bottom-up or top-down implementation
- 6. Write the code!

# The Knapsack Problem

# The Knapsack Problem

Input: a set of **n items**, the i<sup>th</sup> of which has size  $s_i$  and value  $v_i$ . Goal: find a subset of items with total size  $\leq S$ , with max value.

| Items | Α | В | С | D  | E  | F | G  |
|-------|---|---|---|----|----|---|----|
| Value | 7 | 9 | 5 | 12 | 15 | 6 | 12 |
| Size  | 3 | 4 | 2 | 6  | 7  | 3 | 5  |

$$S = 15$$

How would you solve the problem if you were allowed to pick fractional items?

# The Fractional Knapsack Problem

Input: a set of **n items**, the i<sup>th</sup> of which has size  $s_i$  and value  $v_i$ . Goal: pick a fraction in [0,1] of each item with total fractional size  $\leq S$ , with max value.

| Items | Α | В | С | D  | E  | F | G  |
|-------|---|---|---|----|----|---|----|
| Value | 7 | 9 | 5 | 12 | 15 | 6 | 12 |
| Size  | 3 | 4 | 2 | 6  | 7  | 3 | 5  |

$$S = 15$$

**Answer:** 

# The Knapsack Problem

Input: a set of **n items**, the i<sup>th</sup> of which has size  $s_i$  and value  $v_i$ . Goal: find a subset of items with total size  $\leq S$ , with max value.

| Items | Α | В | С | D  | E  | F | G  |
|-------|---|---|---|----|----|---|----|
| Value | 7 | 9 | 5 | 12 | 15 | 6 | 12 |
| Size  | 3 | 4 | 2 | 6  | 7  | 3 | 5  |

$$S = 15$$

The integral version is harder.

Unless P=NP, no polynomial time algorithm can exist (i.e., the problem is NP-hard).

# The Knapsack Problem

| Item<br>s | Α | В | С | D  | E  | F | G  |
|-----------|---|---|---|----|----|---|----|
| val       | 7 | 9 | 5 | 12 | 15 | 6 | 12 |
| size      | 3 | 4 | 2 | 6  | 7  | 3 | 5  |

#### **Issue:**

- How do we know whether to include a particular object X?
- We don't know in advance, so must try both choices and pick best one.

#### Optimal substructure:

- Every object is either included or not.
- If an item X is included, the remaining S - size(X) space is filled with some subset of remaining items.
- This is a smaller instance of knapsack!

# Writing a recurrence

#### Key Idea: clever brute force

We could not know in advance whether to include the i<sup>th</sup> item or not, so we tried both possibilities and took the best one.

# Analyzing the runtime

**Lemma:** Our algorithm runs in time O(nS).

Why doesn't this contradict (or prove P=NP ©) what we discussed earlier?



### Independent sets on trees (Tree DP)

**Definition** (Independent Set): An independent set in a graph G on vertex set V is a subset of vertices  $S \subseteq V$  such that no pair has an edge between them.

**Input:** Tree on n vertices each with a non-negative weight  $w_v$ .

Goal: Find an independent set of vertices with max total weight.

#### Optimal substructure:

- A solution includes a root, or not.
- If the root is chosen, the remaining solution must exclude root's children (why?).
- Every child/grandchild subtree is just another smaller instance of MWIS-in-a-tree

# Analyzing the runtime

**Theorem: MWIS** on a tree can be solved in O(n) time.

# Longest Increasing Subsequence

### Longest Increasing Subsequence

**Input:** A sequence of n numbers  $a_1, a_2, ..., a_n$ 

Goal: find the longest strictly increasing subsequence.

Caution: a subsequence does not have to be contiguous!

7 0 4 3 10 11 17 15

### Defining Subproblems

7 0 4 3 10 11 17 15

#### Optimal substructure:

• An LIS ending with the element 15 extends the LIS that...

# Writing a recurrence

$$LIS(i) =$$

**Answer:** 

### Analyzing runtime

$$LIS(i) = 1 + \max_{j \in [0,i)} LIS(j)$$

$$a_j < a_i$$

#### Naïve runtime:

Can we do better?

This recurrence is taking the *maximum value in a range*. Can we do this step more efficiently?

### Optimizing LIS

$$LIS(i) = 1 + \max_{j \in [0,i)} LIS(j)$$

$$a_j < a_i$$

A: 7 0 4 3 10 11 17 15

#### Optimized LIS: Sortedness of best

$$LIS(i) = 1 + \max_{j \in [0,i)} LIS(j)$$

$$a_j < a_i$$

$$= 1 + \max_{1 \le j \le t: best[j] < A[i]} j$$

$$E[j]: A[E[j]] = best[j]$$

Lemma: For every  $1 \le j \le t$ ,  $best[j] \le best[j+1]$ 

Why does this help?

### Optimized LIS: binary search!

$$LIS(i) = 1 + \max_{1 \le j \le t: best[j] < A[i]} j \quad S_j = \{p \mid LIS(p) = j\}$$

$$best[j] = \min S_j$$

$$E[j]: A[E[j]] = best[j]$$

Lemma: For every  $1 \le j \le t$ ,  $best[j] \le best[j+1]$ 

→ Can compute the max above by binary search!

#### Optimized LIS: Pseudocode

```
function LIS(list A):
     Maintain t \leftarrow 0, best, E \leftarrow []
     for 1 \le i \le n, do:
           s^* \leftarrow \text{BinSearch (best[1:t],A[i])}
          j^* \leftarrow E[s^*] if s^* \neq 0, otherwise j^* \leftarrow 0
          LIS[i] \leftarrow 1+s*
     if LIS[i] > t, then:
           t \leftarrow t+1
           best[t] \leftarrow A[i]
          E[t] \leftarrow I
     else if A[i] < best[LIS[i]], then:
           best[LIS[i]] \leftarrow A[i]
           E[LIS[i]] \leftarrow i
return m = arg max LIS[1:n]
```

#### Optimized LIS: binary search!

Theorem: Optimized LIS runs in time O(n log n).

#### Key Takeaways

- Breaking a problem into subproblems is hard. **Common patterns:** 
  - Use the first k elements of the input?
  - Restrict an integer parameter (e.g., knapsack size) to a smaller value?
  - (for trees), can I solve the problem on each subtree (Tree DP)
  - Solve the problem for a subset of inputs?
  - Keep track of more information?
- Try a *clever brute force* approach
  - Make one decision at a time and recurse, take the best thing that results.
  - Think of this as "memoized backtracking"
- Use a clever data structure to speed up recurrence (SegTree DP!)
- Complexity Analysis is typically: #subproblems x time per subproblem
  - But sometimes harder...