

Distributed Algorithms n computers in a path Our goal: color the computers with {1,2,3} Such that no pair gets the same color. Mejor difficulty: i) well need unique ID en [1,---,N] 2) private random coins. Coloring with unique IDS

Repeat forever · Send message c to all novs. · Receive msgs from all nbrs. Let M be the set received · If C&91,2,3}, & C> Max M, let C = min { 1,2,33 \ M } * Resource complexity: "vound complexity" = number of rounds heeded. * Stopping state: C = { 1,2,3}. Important to know & let neighbors know that you are done. * How fast is this algorithm?

- I round complexity: N.

Cole-Vishkin's algorithm directed path ()->()---· $2^{128} \rightarrow 2.128 = 2^{8}$ $2^8 \rightarrow 2.8 = 2^4$ $2^4 \rightarrow 2.4 = 2^3$ $2^3 \rightarrow 2.3 = 6$ 3 more rounds Fround in total

 \rightarrow 2·x = 2 + log₂x N=22. ((+ (og x) cach node u: current color Co(u): Current color of its $C_1(u)$: Successor *: Interpret Co(a) & C(a) as x-bit benery strings. i(u) E & 0,1,--, x-17 Le the ender of the first but that differs between Co(a) & C(U). b(u) = foily is the value of bit number i(u) in coca)

 $C(u) = 2 \cdot i(u) + b(u)$ (ω) U→V→_ Claum's case 18

i) i(u) = i(v)In this case b(u) + b(v) V 2) i(u) \(\ni(v) \) = easy. Def: log" x: #1 temés you heed to take logs to reach <2. Claim: this algorithm finishes on O (log* oc) vounds.

* Fault-tolevant distributed Computation. Feige 1999 Leader election. 1. Broadcast Model: contalk to everyone else 2. every node has access to an RNG. 3. Malicione noder con solve any problem 2 can communicates Secretly. Goal: run a protocol en gwd nodes so that at stopping, all good nodes hare a single agreed upon UID of a leader.

Randomized Protocol K> (1+d).n Lemma: Suppose there are n hodes & k> n are good. Then, there's a leader electron protocol with succes prob: (K) logk. Proof: Lightest bin protocol Let B < {1,--.,n} repeat: every player broadcasts a bit. for good players - vardon bit. if IBOI < 1BI g then B←Bo. else B←B1

if (B)=1, that node is the leader Analysiss We will use the following fact. Fact: 6: Lx / (K)/2k > City for some constants C115. Here's one way to think about. We know that bursmial coefficients add up to 2K. $\frac{1}{2}(k) = 2^{k}$. There are k of them. The middle coeff (for evenk) is the largest of them all. So (K) ZK. Inequality above says that in fact et's 7 / 1/2 /2.

We will prove: lemma: Pr[algo succeeds] = (1) logk Proofs (Assume kiseven) Consider the first vound. the good players toss exactly \$ 05 & K 1s is exactly (K)/2k > JK.

(by Fact (by Fact) Thus the lighter bin must contain alt most (nt) bad players. Since K>n-Kg K> n-K. Thus after round 1, shove's a committee of 5 1/2

players with majority of them good. In yourd ig conditioned on yourd1,... i I satisfying that each produced a committee with majority good players, with $\geq q \frac{2^{i}}{K}$ chance, the same I after round holds after vound i. Ky left after yourd 2 after voudi Aftertog(n) < $\log(2k) = 1 + \log_2 k$ Committee must have at most 2 members. Both must be good if all steps "succed".

Chanced that hoppening: Pr[round | succeeds N... Avound to Succeeds) = Pr[round | Succeeds]. Pr [round 2 succeeds] Yourd 1 Succeeds) The round i succeeds (Yourd \in interest) > () Ithogk > () logk.

Some constant

0