
COS330: Great Ideas in Theoretical Computer Science Fall 2025

New Computational Models ▶
Algorithms with Predictions

Lecture 16

▶ Algorithms with Predictions Framework
▶ Ski Rental with Predictions

New Computational Models ▶
Algorithms with Predictions

Lecture 16

▶ Algorithms with Predictions Framework
▶ Ski Rental with Predictions

Machine Learning Meets Algorithm Design

Key Question: Can we use ML predictions to design better algorithms?

Challenges:
• How do we incorporate predictions into classical algorithms?
• What if the predictions are wrong? Can we still guarantee good performance?
• Can we get the best of both worlds?

• Great performance when predictions are good
• Worst-case guarantees when predictions are bad

3

Key Properties: Consistency and Robustness

Goal: Tie algorithm performance to the quality of the prediction

Intuition:
• We want algorithms to be consistent: perform well when predictions are accurate

• Ideally recover offline optimal performance with error-free predictions
• We want algorithms to be robust: maintain guarantees even with bad predictions

• ML systems sometimes have very large errors!
• Performance should not be much worse than standard online algorithms with no predictions

Remark
Tradeoff: Trusting predictions (consistency) vs. worst-case protection (robustness)

4

Example: Binary Search with Predictions

Classic problem: Given an array A sorted in increasing order with n elements and a query element q, find
the index of q in A or report that it is not in the array.

Standard binary search:
• Compare q to middle element, recurse on correct half
• Cost: O(log n) comparisons (worst-case optimal)

What if we have a prediction?
• Suppose an ML model predicts where q is likely to be
• Can we use this to beat O(log n) if the prediction is good?
• But still maintain O(log n) worst-case if prediction is wrong?

5

Binary Search with Predictions

Assume we have a predictor h:
• For every query q, predictor returns h(q) = best guess for position of q in array

Algorithm: Binary Search with Predictions
1. Probe location A[h(q)]
2. If q found, return the index
3. Otherwise, we know whether q is smaller or larger than A[h(q)]
4. Suppose q > A[h(q)] (the other case is symmetric):

• Probe h(q) + 1, h(q) + 2, h(q) + 4, h(q) + 8, . . . (exponential search)
• Stop when we find element ≥ q (or hit end of array)

5. Apply binary search on the interval guaranteed to contain q

6

Example: How It Works

Scenario: Array of size n = 1000, searching for element q

Prediction: h(q) = 250 True position: t(q) = 258 Error: nq = 8

0 1000

h(q) = 250

Start here

t(q) = 258

nq = 8

Exponential search

Binary search here

Total: ≈ 6 comparisons vs. log2 1000 ≈ 10 for standard binary search!

7

Cost Analysis

Notation:
• Let t(q) = true position of q in the array

• (or position of largest element smaller than q if q not in array)
• Let nq = |h(q) − t(q)| = error of the predictor on query q

How the algorithm works:
• Start at h(q), then search exponentially: h(q) + 1, h(q) + 2, h(q) + 4, h(q) + 8, . . .

• After log nq probes, we bracket an interval of size ≈ nq containing q

• Binary search on that interval: another log nq comparisons

Total cost: At most 2 log nq comparisons

Remark
Key insight: Cost depends on prediction error nq, not array size n!
If nq = O(polylog n), we get O(log log n) performance

8

Robustness Observation

What if the predictor is terrible?

• Error nq is always bounded: nq ≤ n

• Worst-case cost: 2 log nq ≤ 2 log n = O(log n)
• This matches standard binary search!

Robustness property: Even an exceptionally bad predictor cannot do much harm!

Remark
Takeaway:

• Good predictions help (can achieve log log performance)
• Bad predictions don’t hurt (worst case is still O(log n))

9

New Computational Models ▶
Algorithms with Predictions

Lecture 16

▶ Algorithms with Predictions Framework
▶ Ski Rental with Predictions

Recall: Ski Rental Problem (Lecture 14)

Setup:
• Rent skis for $1 per day (today R = 1), or buy for $B (one-time cost)
• Will ski for d days (unknown in advance)

Value of optimal offline algorithm:
OPT = min{d, B}

• If d < B: rent all days (pay $d)
• If d ≥ B: buy on day 1 (pay $B)

From Lecture 14:
• Better-Late-Than-Never algorithm: rent for B − 1 days, then buy
• Achieves competitive ratio 2 − 1/B

• No deterministic algorithm does better!

11

Ski Rental with Predictions: Setup

New assumption: We have a predictor!

• Predictor gives p = predicted number of days we’ll ski
• Error bound: |d − p| ≤ η where d is true number of days

Formal definitions:
• α-consistency: Competitive ratio → α as prediction error → 0
• β-robustness: Competitive ratio ≤ β even with arbitrarily bad predictions

Question: Can we use p to beat the 2-competitive ratio when predictions are good, while still
maintaining robustness when predictions are bad?

12

Trust ML Algorithm

First attempt: Blindly follow the prediction

Algorithm: Trust ML Algorithm
• If p ≥ B: Buy skis immediately on day 1
• Otherwise: Rent for however long we end up skiing

Intuition:
• If prediction says we’ll ski many days, buy early
• If prediction says we’ll ski few days, keep renting

Question: Does this satisfy our consistency and robustness goals?

13

Trust ML Algorithm Fails Robustness

Lemma: Lemma
The Trust ML algorithm is not β-robust for any finite β.

Proof
Consider scenario where d = η + 1 > B but p = 1.
Cost analysis:

• Trust ML algorithm rents for all d = η + 1 days (since p = 1 < B)
• Trust ML pays: $(η + 1)
• OPT buys on day 1 (since d > B), pays: $B

• Competitive ratio: CR = η+1
B → ∞ as η → ∞

Therefore, no finite β can bound the competitive ratio.

14

Prudent Trust ML Algorithm

Key idea: Add a trust parameter λ ∈ [0, 1] to control how much we trust the prediction

Algorithm: Prudent Trust ML Algorithm
Input: Prediction p, parameter λ ∈ [0, 1]

• If p ≥ B: Buy on the start of day ⌈λ · B⌉

• Else: Buy on the start of day
⌈

B
λ

⌉

15

Interpreting the Trust Parameter λ

What does λ mean?

Examine extreme cases:

• λ = 1: Prudent Trust ML simplifies to:
• Buy on the start of day B (if still skiing)
• This is exactly the Better Late Than Never algorithm from Lecture 14!
• Competitive ratio: 2 − 1/B (no use of prediction)

• λ = 0: Prudent Trust ML simplifies to:
• Buy immediately if p ≥ B, otherwise rent forever
• This is the Trust ML algorithm (blind trust in prediction)

λ controls how much we trust the prediction:
• λ = 1: zero trust (ignore prediction)
• λ = 0: complete trust (follow prediction blindly)
• λ ∈ (0, 1): balanced trust

16

Robustness Lemma

Lemma: Robustness Lemma
The Prudent Trust ML algorithm is 1+λ

λ -robust:

Competitive Ratio ≤ 1 + λ

λ

for any prediction error η (independent of η).

What does this tell us?
• No matter how bad the prediction is, CR ≤ 1+λ

λ

• Worst-case guarantee independent of prediction quality
• Example: λ = 1/2 gives CR ≤ 3 (vs. 2 for no predictions)

17

Proof: Robustness Bound for Case p ≥ B

Proof
In this case, Prudent Trust ML buys on the start of day ⌈λ · B⌉

Case 1: d < ⌈λ · B⌉ Both rent all days, CR = 1

Case 2: ⌈λ · B⌉ ≤ d ≤ B

• Prudent Trust ML pays: $(⌈λ · B⌉ − 1 + B), OPT pays: $d

• CR = ⌈λ·B⌉−1+B
d ≤ λ·B+B

λ·B = 1+λ
λ

Case 3: d ≥ B

• Prudent Trust ML pays: $(⌈λ · B⌉ − 1 + B), OPT pays: $B

• CR = ⌈λ·B⌉−1+B
B ≤ 1 + λ ≤ 1+λ

λ

18

Proof: Case p < B

Proof
In this case, Prudent Trust ML buys on the start of day ⌈B/λ⌉

Case 1: d ≤ B Both rent all days, CR = 1
Case 2: B < d < ⌈B/λ⌉

• Prudent Trust ML rents every day and pays: $d

• OPT buys immediately and pays: $B

• CR = d

B
≤ B/λ

B
= 1

λ
≤ 1 + λ

λ

Case 3: d ≥ ⌈B/λ⌉
• Prudent Trust ML pays: $(⌈B/λ⌉ − 1 + B)
• OPT pays: $B

• CR = ⌈B/λ⌉ − 1 + B

B
≤ B/λ + B

B
= 1 + 1

λ
= 1 + λ

λ

19

Consistency Lemma

Lemma: Consistency Lemma
The Prudent Trust ML algorithm is (1 + λ)-consistent:

Competitive Ratio ≤ 1 + λ + η

(1 − λ) · OPT

What does this tell us?
• As η → 0, the bound approaches 1 + λ

• Perfect predictions (η = 0) give CR ≤ 1 + λ

• Example: λ = 1/2 with η = 0 gives CR ≤ 1.5 (vs. 2 for no predictions)

20

Proof: Consistency Bound for Case p ≥ B

Proof
Case 1: d < ⌈λB⌉
In this range, both Prudent Trust ML and OPT rent every day, so CR = 1.
Case 2: d ≥ ⌈λB⌉

• Prudent Trust ML buys on day ⌈λB⌉ and pays

B + ⌈λB⌉ − 1 ≤ (1 + λ)B.

• Since p ≥ B and |d − p| ≤ η, if d < B then B ≤ p ≤ d + η = OPT + η, while if d ≥ B then
OPT = B, so in all cases:

B ≤ OPT + η.

• Therefore

CR ≤ (1 + λ)B
OPT ≤ (1 + λ)(OPT + η)

OPT = 1 + λ + (1 + λ) · η

OPT ≤ 1 + λ + η

(1 − λ) · OPT

To see the last inequality: for λ ∈ [0, 1], (1 + λ) · (1 − λ) = 1 − λ2 ≤ 1 ⇒ (1 + λ) ≤ 1/(1 − λ)
21

Proof: Consistency Bound for Case p < B

Proof
Case 1: d < ⌈λB⌉
In this range, both Prudent Trust ML and OPT rent every day, so CR = 1.
Case 2: B < d < ⌈B/λ⌉
Here Prudent Trust ML rents every day, so it pays d. Using |d − p| ≤ η and p < B,

CR = d

OPT ≤ p + η

OPT <
B + η

OPT = 1 + η

OPT ≤ 1 + λ + η

(1 − λ) · OPT

22

Proof: Consistency Bound for Case p < B (continued)

Proof
Case 3: d ≥ ⌈B/λ⌉

• Prudent Trust ML buys on day ⌈B/λ⌉, so

CR = B + ⌈B/λ⌉ − 1
OPT <

B + B
λ

OPT
• Since p < B and |d − p| ≤ η with d ≥ ⌈B/λ⌉,

η = d − p >
B

λ
− B = (1 − λ)B

λ

• So B <
λ

1 − λ
η and

CR <
B + B

λ

OPT < 1 + η

(1 − λ)OPT ≤ 1 + λ + η

(1 − λ) · OPT

23

Consistency-Robustness Tradeoff

Putting the two together: Competitive Ratio ≤ min
{

1+λ
λ , 1 + λ + η

(1−λ)·OPT

}

Small λ (trust predictions more):
• Consistency: 1 + λ ≈ 1 (excellent!)
• Robustness: 1+λ

λ is large (poor worst-case)

Large λ (trust predictions less):
• Consistency: ≥ η

OPT (could be much worse than no predictions if η/OPT large)
• Robustness: 1+λ

λ ≈ 2 (good worst-case, matches Lecture 14)

In practice: Tune λ based on confidence in predictions
• High confidence → small λ → prioritize consistency
• Low confidence → large λ → prioritize robustness

24

	Algorithms with Predictions Framework
	Ski Rental with Predictions

