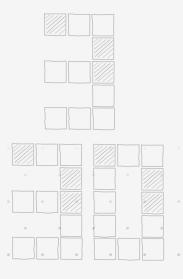
COS330: Great Ideas in Theoretical Computer Science



New Computational Models ► Algorithms with Predictions

Lecture 16

- ► Algorithms with Predictions Framework
- ► Ski Rental with Predictions



New Computational Models ► Algorithms with Predictions

Lecture 16

- ► Algorithms with Predictions Framework
- ► Ski Rental with Predictions

Machine Learning Meets Algorithm Design

Key Question: Can we use ML predictions to design *better* algorithms?

Challenges:

- How do we incorporate predictions into classical algorithms?
- What if the predictions are wrong? Can we still guarantee good performance?
- Can we get the best of both worlds?
 - · Great performance when predictions are good
 - Worst-case guarantees when predictions are bad

Key Properties: Consistency and Robustness

Goal: Tie algorithm performance to the quality of the prediction

Intuition:

- We want algorithms to be consistent: perform well when predictions are accurate
 - Ideally recover offline optimal performance with error-free predictions
- We want algorithms to be robust: maintain guarantees even with bad predictions
 - ML systems sometimes have very large errors!
 - Performance should not be much worse than standard online algorithms with no predictions

Remark

Tradeoff: Trusting predictions (consistency) vs. worst-case protection (robustness)

Example: Binary Search with Predictions

Classic problem: Given an array A sorted in increasing order with n elements and a query element q, find the index of q in A or report that it is not in the array.

Standard binary search:

- Compare q to middle element, recurse on correct half
- Cost: $O(\log n)$ comparisons (worst-case optimal)

What if we have a prediction?

- Suppose an ML model predicts where q is likely to be
- Can we use this to beat $O(\log n)$ if the prediction is good?
- But still maintain $O(\log n)$ worst-case if prediction is wrong?

Binary Search with Predictions

Assume we have a predictor *h*:

• For every query q, predictor returns h(q) = best guess for position of q in array

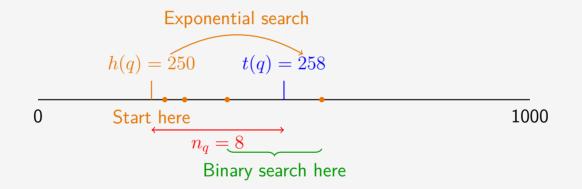
Algorithm: Binary Search with Predictions

- 1. Probe location A[h(q)]
- 2. If *q* found, return the index
- 3. Otherwise, we know whether q is smaller or larger than A[h(q)]
- 4. Suppose q > A[h(q)] (the other case is symmetric):
 - Probe h(q) + 1, h(q) + 2, h(q) + 4, h(q) + 8, ... (exponential search)
 - Stop when we find element $\geq q$ (or hit end of array)
- 5. Apply binary search on the interval guaranteed to contain q

Example: How It Works

Scenario: Array of size n = 1000, searching for element q

Prediction: h(q) = 250 True position: t(q) = 258 Error: $n_q = 8$



Total: ≈ 6 comparisons vs. $\log_2 1000 \approx 10$ for standard binary search!

Cost Analysis

Notation:

- Let t(q) = true position of q in the array
 - (or position of largest element smaller than q if q not in array)
- Let $n_q = |h(q) t(q)| =$ error of the predictor on query q

How the algorithm works:

- Start at h(q), then search exponentially: $h(q) + 1, h(q) + 2, h(q) + 4, h(q) + 8, \dots$
- After $\log n_q$ probes, we bracket an interval of size $pprox n_q$ containing q
- Binary search on that interval: another $\log n_q$ comparisons

Total cost: At most $2 \log n_q$ comparisons

Remark

Key insight: Cost depends on **prediction error** n_q , not array size n!

If $n_q = O(\operatorname{polylog} n)$, we get $O(\log \log n)$ performance

Robustness Observation

What if the predictor is terrible?

- Error n_q is always bounded: $n_q \le n$
- Worst-case cost: $2 \log n_q \le 2 \log n = O(\log n)$
- This matches standard binary search!

Robustness property: Even an exceptionally bad predictor cannot do much harm!

Remark

Takeaway:

- Good predictions help (can achieve log log performance)
- Bad predictions don't hurt (worst case is still $O(\log n)$)



New Computational Models ► Algorithms with Predictions

Lecture 16

- ► Algorithms with Predictions Framework
- ► Ski Rental with Predictions

Recall: Ski Rental Problem (Lecture 14)

Setup:

- Rent skis for \$1 per day (today R = 1), or buy for B (one-time cost)
- Will ski for *d* days (unknown in advance)

Value of optimal offline algorithm:

$$\mathsf{OPT} = \min\{d, B\}$$

- If d < B: rent all days (pay d)
- If $d \geq B$: buy on day 1 (pay \$B)

From Lecture 14:

- Better-Late-Than-Never algorithm: rent for B-1 days, then buy
- Achieves competitive ratio 2 1/B
- No deterministic algorithm does better!

Ski Rental with Predictions: Setup

New assumption: We have a predictor!

- Predictor gives p = predicted number of days we'll ski
- Error bound: $|d-p| \le \eta$ where d is true number of days

Formal definitions:

- α -consistency: Competitive ratio $\to \alpha$ as prediction error $\to 0$
- β -robustness: Competitive ratio $\leq \beta$ even with arbitrarily bad predictions

Question: Can we use p to beat the 2-competitive ratio when predictions are good, while still maintaining robustness when predictions are bad?

Trust ML Algorithm

First attempt: Blindly follow the prediction

Algorithm: Trust ML Algorithm

- If $p \ge B$: Buy skis immediately on day 1
- Otherwise: Rent for however long we end up skiing

Intuition:

- If prediction says we'll ski many days, buy early
- If prediction says we'll ski few days, keep renting

Question: Does this satisfy our consistency and robustness goals?

Trust ML Algorithm Fails Robustness

Lemma: Lemma

The Trust ML algorithm is not β -robust for any finite β .

Proof

Consider scenario where $d = \eta + 1 > B$ but p = 1.

Cost analysis:

- Trust ML algorithm rents for all $d = \eta + 1$ days (since p = 1 < B)
- Trust ML pays: $\$(\eta + 1)$
- OPT buys on day 1 (since d > B), pays: \$B
- Competitive ratio: $\mathsf{CR} = \frac{\eta+1}{B} \to \infty$ as $\eta \to \infty$

Therefore, no finite β can bound the competitive ratio.

Prudent Trust ML Algorithm

Key idea: Add a trust parameter $\lambda \in [0,1]$ to control how much we trust the prediction

Algorithm: Prudent Trust ML Algorithm

Input: Prediction p, parameter $\lambda \in [0, 1]$

- If $p \ge B$: Buy on the start of day $\lceil \lambda \cdot B \rceil$
- Else: Buy on the start of day $\left\lceil \frac{B}{\lambda} \right\rceil$

Interpreting the Trust Parameter λ

What does λ mean?

Examine extreme cases:

- $\lambda = 1$: Prudent Trust ML simplifies to:
 - Buy on the start of day B (if still skiing)
 - This is exactly the Better Late Than Never algorithm from Lecture 14!
 - Competitive ratio: 2 1/B (no use of prediction)
- $\lambda = 0$: Prudent Trust ML simplifies to:
 - Buy immediately if $p \ge B$, otherwise rent forever
 - This is the Trust ML algorithm (blind trust in prediction)

λ controls how much we **trust** the prediction:

- $\lambda = 1$: zero trust (ignore prediction)
- $\lambda = 0$: complete trust (follow prediction blindly)
- $\lambda \in (0,1)$: balanced trust

Robustness Lemma

Lemma: Robustness Lemma

The Prudent Trust ML algorithm is $\frac{1+\lambda}{\lambda}$ -robust:

Competitive Ratio
$$\leq \frac{1+\lambda}{\lambda}$$

for any prediction error η (independent of η).

What does this tell us?

- No matter how bad the prediction is, $CR \leq \frac{1+\lambda}{\lambda}$
- Worst-case guarantee independent of prediction quality
- Example: $\lambda = 1/2$ gives CR ≤ 3 (vs. 2 for no predictions)

Proof: Robustness Bound for Case $p \ge B$

Proof

In this case, Prudent Trust ML buys on the start of day $\lceil \lambda \cdot B \rceil$

Case 1: $d < \lceil \lambda \cdot B \rceil$ Both rent all days, CR = 1

Case 2: $\lceil \lambda \cdot B \rceil \le d \le B$

- Prudent Trust ML pays: $\{(\lceil \lambda \cdot B \rceil 1 + B), \text{ OPT pays: } d$
- CR = $\frac{\lceil \lambda \cdot B \rceil 1 + B}{d} \le \frac{\lambda \cdot B + B}{\lambda \cdot B} = \frac{1 + \lambda}{\lambda}$

Case 3: $d \ge B$

- Prudent Trust ML pays: $\{([\lambda \cdot B] 1 + B), OPT \text{ pays: } \}B$
- CR = $\frac{\lceil \lambda \cdot B \rceil 1 + B}{B} \le 1 + \lambda \le \frac{1 + \lambda}{\lambda}$

Proof: Case p < B

Proof

In this case, Prudent Trust ML buys on the start of day $\lceil B/\lambda \rceil$

Case 1: $d \le B$ Both rent all days, CR = 1

Case 2: $B < d < \lceil B/\lambda \rceil$

- Prudent Trust ML rents every day and pays: \$d
- ullet OPT buys immediately and pays: \$B

•
$$CR = \frac{d}{B} \le \frac{B/\lambda}{B} = \frac{1}{\lambda} \le \frac{1+\lambda}{\lambda}$$

Case 3: $d \geq \lceil B/\lambda \rceil$

- Prudent Trust ML pays: $\$(\lceil B/\lambda \rceil 1 + B)$
- OPT pays: \$B

•
$$\operatorname{CR} = \frac{\lceil B/\lambda \rceil - 1 + B}{B} \le \frac{B/\lambda + B}{B} = 1 + \frac{1}{\lambda} = \frac{1 + \lambda}{\lambda}$$

Consistency Lemma

Lemma: Consistency Lemma

The Prudent Trust ML algorithm is $(1 + \lambda)$ -consistent:

Competitive Ratio
$$\leq 1 + \lambda + \frac{\eta}{(1 - \lambda) \cdot \mathsf{OPT}}$$

What does this tell us?

- As $\eta \to 0$, the bound approaches $1 + \lambda$
- Perfect predictions $(\eta = 0)$ give $CR \le 1 + \lambda$
- Example: $\lambda = 1/2$ with $\eta = 0$ gives CR ≤ 1.5 (vs. 2 for no predictions)

Proof: Consistency Bound for Case $p \ge B$

Proof

Case 1: $d < \lceil \lambda B \rceil$

In this range, both Prudent Trust ML and OPT rent every day, so CR = 1.

Case 2: $d \geq \lceil \lambda B \rceil$

• Prudent Trust ML buys on day $\lceil \lambda B \rceil$ and pays

$$B + \lceil \lambda B \rceil - 1 \le (1 + \lambda)B.$$

• Since $p \ge B$ and $|d-p| \le \eta$, if d < B then $B \le p \le d + \eta = \mathsf{OPT} + \eta$, while if $d \ge B$ then $\mathsf{OPT} = B$, so in all cases:

$$B \leq \mathsf{OPT} + \eta$$
.

Therefore

$$\mathsf{CR} \leq \frac{(1+\lambda)B}{\mathsf{OPT}} \leq \frac{(1+\lambda)(\mathsf{OPT} + \eta)}{\mathsf{OPT}} = 1 + \lambda + \frac{(1+\lambda) \cdot \eta}{\mathsf{OPT}} \leq 1 + \lambda + \frac{\eta}{(1-\lambda) \cdot \mathsf{OPT}}$$

To see the last inequality: for $\lambda \in [0,1]$, $(1+\lambda) \cdot (1-\lambda) = 1-\lambda^2 \le 1 \Rightarrow (1+\lambda) \le 1/(1-\lambda)$

Proof: Consistency Bound for Case p < B

Proof

Case 1: $d < \lceil \lambda B \rceil$

In this range, both Prudent Trust ML and OPT rent every day, so CR = 1.

Case 2: $B < d < \lceil B/\lambda \rceil$

Here Prudent Trust ML rents every day, so it pays d. Using $|d - p| \le \eta$ and p < B,

$$\mathsf{CR} = \frac{d}{\mathsf{OPT}} \leq \frac{p + \eta}{\mathsf{OPT}} < \frac{B + \eta}{\mathsf{OPT}} = 1 + \frac{\eta}{\mathsf{OPT}} \leq 1 + \lambda + \frac{\eta}{(1 - \lambda) \cdot \mathsf{OPT}}$$

Proof: Consistency Bound for Case p < B (continued)

Proof

Case 3: $d \geq \lceil B/\lambda \rceil$

• Prudent Trust ML buys on day $\lceil B/\lambda \rceil$, so

$$\mathsf{CR} = \frac{B + \lceil B/\lambda \rceil - 1}{\mathsf{OPT}} < \frac{B + \frac{B}{\lambda}}{\mathsf{OPT}}$$

• Since p < B and $|d - p| \le \eta$ with $d \ge \lceil B/\lambda \rceil$,

$$\eta = d - p > \frac{B}{\lambda} - B = \frac{(1 - \lambda)B}{\lambda}$$

• So $B < \frac{\lambda}{1-\lambda}\eta$ and

$$\mathsf{CR} < \frac{B + \frac{B}{\lambda}}{\mathsf{OPT}} < 1 + \frac{\eta}{(1 - \lambda)\mathsf{OPT}} \le 1 + \lambda + \frac{\eta}{(1 - \lambda) \cdot \mathsf{OPT}}$$

Consistency-Robustness Tradeoff

Putting the two together: Competitive Ratio $\leq \min \left\{ \frac{1+\lambda}{\lambda}, \ 1+\lambda + \frac{\eta}{(1-\lambda)\cdot\mathsf{OPT}} \right\}$

Small λ (trust predictions more):

- Consistency: $1 + \lambda \approx 1$ (excellent!)
- Robustness: $\frac{1+\lambda}{\lambda}$ is large (poor worst-case)

Large λ (trust predictions less):

- ullet Consistency: $\geq \frac{\eta}{\mathsf{OPT}}$ (could be much worse than no predictions if η/OPT large)
- Robustness: $\frac{1+\lambda}{\lambda} \approx 2$ (good worst-case, matches Lecture 14)

In practice: Tune λ based on confidence in predictions

- High confidence \rightarrow small $\lambda \rightarrow$ prioritize consistency
- Low confidence \rightarrow large $\lambda \rightarrow$ prioritize robustness