COS330: Great Ideas in Theoretical Computer Science Fall 2025

A1]
/// L]
DD e New Computational Models »
L] Algorithms with Predictions
%DD DD Lecture 16
L 2
LT AL] & » Algorithms with Predictions Framework
R » Ski Rental with Predictions
L)

. PRINCETON . . .
"8 compurer seience

New Computational Models »
Algorithms with Predictions

Lecture 16

Algorithms with Predictions Framework

Machine Learning Meets Algorithm Design ‘HHHH

Key Question: Can we use ML predictions to design better algorithms?

Challenges:
® How do we incorporate predictions into classical algorithms?
* What if the predictions are wrong? Can we still guarantee good performance?

e Can we get the best of both worlds?

¢ Great performance when predictions are good
¢ Worst-case guarantees when predictions are bad

Key Properties: Consistency and Robustness HHHHH

Goal: Tie algorithm performance to the quality of the prediction

Intuition:
* We want algorithms to be consistent: perform well when predictions are accurate
¢ I|deally recover offline optimal performance with error-free predictions
* We want algorithms to be robust: maintain guarantees even with bad predictions

® ML systems sometimes have very large errors!
¢ Performance should not be much worse than standard online algorithms with no predictions

Tradeoff: Trusting predictions (consistency) vs. worst-case protection (robustness)

Example: Binary Search with Predictions HHHHH

Classic problem: Given an array A sorted in increasing order with n elements and a query element ¢, find
the index of ¢ in A or report that it is not in the array.

Standard binary search:
® Compare ¢ to middle element, recurse on correct half
® Cost: O(logn) comparisons (worst-case optimal)

What if we have a prediction?
® Suppose an ML model predicts where ¢ is likely to be
® Can we use this to beat O(logn) if the prediction is good?
® But still maintain O(logn) worst-case if prediction is wrong?

Binary Search with Predictions HHHHH

Assume we have a predictor h:
* For every query ¢, predictor returns h(q) = best guess for position of ¢ in array

Algorithm: Binary Search with Predictions

1.
2.
3.
4.

Probe location A[h(q)]
If ¢ found, return the index

Otherwise, we know whether ¢ is smaller or larger than A[h(q)]

Suppose ¢ > A[h(q)] (the other case is symmetric):
* Probe h(q) + 1, h(q) + 2, h(q) + 4, h(q) + 8,... (exponential search)
® Stop when we find element > ¢ (or hit end of array)

5. Apply binary search on the interval guaranteed to contain ¢

Example: How It Works ‘HHHH

Scenario: Array of size n = 1000, searching for element ¢

Prediction: h(q) =250 True position: t(q) = 258 Error: n, =8

Exponential search

h(q) = 250 t(q) = 258

| — = I

0 Start here 1000
ng =8

Binary search here

Py
@

Total: ~ 6 comparisons vs. log, 1000 ~ 10 for standard binary search!

Cost Analysis HHHHH

Notation:
* Let t(q) = true position of ¢ in the array
¢ (or position of largest element smaller than ¢ if ¢ not in array)

* Let n, = |h(q) — t(q)| = error of the predictor on query ¢

How the algorithm works:
e Start at h(q), then search exponentially: h(q) + 1, h(q) + 2,h(q) +4,h(q) + 8, ...
o After logn, probes, we bracket an interval of size ~ n, containing ¢
® Binary search on that interval: another logn, comparisons

Total cost: At most 2logn, comparisons

Key insight: Cost depends on prediction error n,, not array size n!
If n, = O(polylogn), we get O(loglogn) performance

Robustness Observation HHHHH

What if the predictor is terrible?

® Error n, is always bounded: n, <n
* Worst-case cost: 2logn, < 2logn = O(logn)
® This matches standard binary search!

Robustness property: Even an exceptionally bad predictor cannot do much harm!

Takeaway:
e Good predictions help (can achieve loglog performance)
e Bad predictions don't hurt (worst case is still O(logn))

New Computational Models »
Algorithms with Predictions

Lecture 16

Ski Rental with Predictions

Recall: Ski Rental Problem (Lecture 14)

Setup:
® Rent skis for $1 per day (today R = 1), or buy for $B (one-time cost)
e Will ski for d days (unknown in advance)

Value of optimal offline algorithm:
OPT = min{d, B}
e If d < B: rent all days (pay $d)
® If d > B: buy on day 1 (pay $B)

From Lecture 14:
e Better-Late-Than-Never algorithm: rent for B — 1 days, then buy
® Achieves competitive ratio 2 — 1/B
* No deterministic algorithm does better!

11

Ski Rental with Predictions: Setup HHHHH

New assumption: We have a predictor!

® Predictor gives p = predicted number of days we'll ski
® Error bound: |d — p| < n where d is true number of days

Formal definitions:
* a-consistency: Competitive ratio — « as prediction error — 0
* (-robustness: Competitive ratio < (3 even with arbitrarily bad predictions

Question: Can we use p to beat the 2-competitive ratio when predictions are good, while still
maintaining robustness when predictions are bad?

12

Trust ML Algorithm HHHHH

First attempt: Blindly follow the prediction

e If p > B: Buy skis immediately on day 1

Algorithm: Trust ML Algorithm

® Otherwise: Rent for however long we end up skiing

Intuition:
e If prediction says we'll ski many days, buy early
e If prediction says we'll ski few days, keep renting

Question: Does this satisfy our consistency and robustness goals?

13

Trust ML Algorithm Fails Robustness ‘HHHHH

Lemma: Lemma
The Trust ML algorithm is not -robust for any finite .

Proof
Consider scenario where d =n+1 > B but p=1.

Cost analysis:
* Trust ML algorithm rents for all d =1+ 1 days (since p =1 < B)
® Trust ML pays: $(n+ 1)
* OPT buys on day 1 (since d > B), pays: $B
® Competitive ratio: CR = %1 — 00 as) — o0

Therefore, no finite 3 can bound the competitive ratio.

14

Prudent Trust ML Algorithm ‘HHHH

Key idea: Add a trust parameter A € [0, 1] to control how much we trust the prediction

Algorithm: Prudent Trust ML Algorithm

Input: Prediction p, parameter A\ € [0, 1]
® If p > B: Buy on the start of day [\ B]

* Else: Buy on the start of day [%

15

Interpreting the Trust Parameter)\

What does A\ mean?
Examine extreme cases:

e)\ = 1: Prudent Trust ML simplifies to:

® Buy on the start of day B (if still skiing)
¢ This is exactly the Better Late Than Never algorithm from Lecture 14!

* Competitive ratio: 2 — 1/B (no use of prediction)

e)\ = 0: Prudent Trust ML simplifies to:
¢ Buy immediately if p > B, otherwise rent forever
® This is the Trust ML algorithm (blind trust in prediction)

A controls how much we trust the prediction:
® X\ = 1: zero trust (ignore prediction)
® X\ =0: complete trust (follow prediction blindly)
® XA € (0,1): balanced trust

16

Robustness Lemma HHHHH

Lemma: Robustness Lemma

The Prudent Trust ML algorithm is %—robust:

1+ A
Competitive Ratio < %

for any prediction error 7 (independent of 7).

What does this tell us?
* No matter how bad the prediction is, CR < %
* Worst-case guarantee independent of prediction quality
* Example: A = 1/2 gives CR < 3 (vs. 2 for no predictions)

17

Proof: Robustness Bound for Case p > B HHHHHH

In this case, Prudent Trust ML buys on the start of day [\ - B]
Case 1: d < [A- B] Both rent all days, CR =1

Case 2: [A\-B| <d<B
® Prudent Trust ML pays: $([A- B] —1+ B), OPT pays: $d

__ [AMB]-14B _ AB4B __ 1\
° CR = d <NB T

Case 3: d > B
* Prudent Trust ML pays: $([A- B] — 1+ B), OPT pays: $B
o CR=[REBLLEE 9 4) <1

18

Proof: Case p < B i

In this case, Prudent Trust ML buys on the start of day [B/\]

Case 1: d < B Both rent all days, CR =1

Case 2: B <d < [B/\]

® Prudent Trust ML rents every day and pays: $d

® OPT buys immediately and pays: $B

e CR = i < B_/>\ = l < ﬂ

B~ B AT A

Case 3: d > [B/\]

* Prudent Trust ML pays: $([B/A] — 1+ B)

* OPT pays: $B

. CR — [B/A\]—1+B < B/A+ B o L_1+A
B B A A

19

Consistency Lemma ‘HHHH

Lemma: Consistency Lemma

The Prudent Trust ML algorithm is (1 + \)-consistent:

Ui
(1—\)-OPT

Competitive Ratio < 1+ X +

What does this tell us?
® As n — 0, the bound approaches 1 4+ A
® Perfect predictions (n = 0) give CR < 1+ A
® Example: A = 1/2 with n = 0 gives CR < 1.5 (vs. 2 for no predictions)

20

Proof: Consistency Bound for Case p > B HHHHHH

Proof

Case 1: d < D\B]
In this range, both Prudent Trust ML and OPT rent every day, so CR = 1.

Case 2: d > [\B]
® Prudent Trust ML buys on day [AB] and pays
B+ [AB]-1<(1+)\)B.

® Sincep>Band |d—p| <n,ifd< Bthen B<p<d+n=O0PT+mn, while if d > B then

OPT = B, so in all cases:
B < OPT +n.

® Therefore

(1+)\)B (1+)\)(OPI +77) (1+>\)-77 i
< < — L
CR SPT : 1+ N+ 1—|—)\—|—(1 N)-OP

To see the last inequality: for A € [0,1], (1+A)-(1=XA)=1- N <1=(1+))<1/(1-)\)
21

Proof: Consistency Bound for Case p < B ‘HHHHH

Proof

Case 1: d < [A\B]
In this range, both Prudent Trust ML and OPT rent every day, so CR = 1.

Case 2: B<d< [B/\]
Here Prudent Trust ML rents every day, so it pays d. Using |d — p| <7 and p < B,
d _ptn _B+n n U

= = — <
OPT = OPT ~ OPT ' TopT = TAT =N opT

CR

22

I
Proof: Consistency Bound for Case p < B (continued)

Proof
Case 3: d > [B/\]
® Prudent Trust ML buys on day [B/A], so

_B+(B/A]—1<B+§
B OPT OPT

* Since p < B and |d — p| < n with d > [B/\],

CR

B (1-MNB
o SoB<1_>\nand
B+ B
CR < +A<1+ 1 <14+ 4

OPT (1—A)OPT ~ (1—\)-OPT

.

Consistency-Robustness Tradeoff HHHHH

Putting the two together: Competitive Ratio < min {%, 1+ X+ OTA;]-OT}

Small)\ (trust predictions more):
e Consistency: 1+ A ~ 1 (excellent!)

* Robustness: 42 is large (poor worst-case)

Large \ (trust predictions less):
* Consistency: > g+ (could be much worse than no predictions if 7/OPT large)
14X

® Robustness: -~ 2 (good worst-case, matches Lecture 14)

In practice: Tune) based on confidence in predictions

¢ High confidence — small A — prioritize consistency
® Low confidence — large A — prioritize robustness

24

	Algorithms with Predictions Framework
	Ski Rental with Predictions

