
COS330: Great Ideas in Theoretical Computer Science Fall 2025

New Computational Models ▶
Online Algorithms

Lecture 14

▶ Motivation and Competitive Ratio
▶ Ski Rental Problem
▶ Online Bipartite Matching

New Computational Models ▶
Online Algorithms

Lecture 14

▶ Motivation and Competitive Ratio
▶ Ski Rental Problem
▶ Online Bipartite Matching

Finding the Maximum

Problem: Find the maximum element in a list

Offline version: You see the entire list at once
• Scan through, keep track of maximum seen so far
• Return the maximum at the end
• Easy!

Online version: Elements arrive one at a time
• You must immediately and irrevocably decide: select this element or not?
• You can only select one element total
• Goal: Select the maximum element

Remark
Challenge: How do you decide without knowing what comes next?

3

Example: Elements Arriving Online

Problem:
• Elements arrive one at a time (you can’t see future elements)
• After seeing each element, you must decide: select it or skip it?
• Once you select, you’re done (you can only select one element)
• Goal: Select the maximum element in the list

Elements arrive:

Key question: How do we measure the quality of our solution when we can’t always be optimal?

4

Measuring Online Algorithm Performance

Idea: Compare online algorithm to optimal offline algorithm (which knows the future)

Competitive Ratio = Value of online algorithm
Value of optimal offline algorithm = Value of online algorithm

Optimal value in hindsight

Goal: Design algorithms with competitive ratio close to 1

Remark
Notes:

• For minimization problems: competitive ratio ≥ 1 (online pays at least as much as offline)
• For maximization problems: competitive ratio ≤ 1 (online gets at most as much as offline)
• This is worst-case analysis over all possible inputs

5

Competitive Ratio: Formal Definition

Consider an online algorithm A for a minimization problem:

Let A(I) denote the cost of algorithm A on input I
Let OPT(I) denote the cost of the optimal offline algorithm on input I

Algorithm A is α-competitive if for all inputs I:

A(I) ≤ α · OPT(I)

6

New Computational Models ▶
Online Algorithms

Lecture 14

▶ Motivation and Competitive Ratio
▶ Ski Rental Problem
▶ Online Bipartite Matching

The Ski Rental Problem
Setup: You’re going on a ski trip

• You don’t know how many days you’ll ski
• Each day, you must decide: rent or buy skis?

Costs:
• Renting costs R per day
• Buying costs B (one-time purchase)
• Assume B/R is an integer (for simplicity)

Online constraint: You learn how many days you’ll ski only as they pass
• Each morning: do you rent or buy today?
• Once you buy, you own the skis (no more rental costs)
• Once you stop skiing, the season ends

Goal: Minimize total cost compared to optimal offline algorithm (which knows the number of days in
advance)

8

Competitive Ratio for Ski Rental

Let d be the total number of days you ski

Optimal offline cost:

OPT(d) =
Rd if Rd < B (rent all days)

B if Rd ≥ B (buy on day 1)
Equivalently: OPT(d) = min(Rd, B)

For an online algorithm A:
• Let A(d) be the cost when skiing for d days

Algorithm A is α-competitive if:
max
d≥1

A(d)
OPT(d) ≤ α

Goal: Find an online algorithm with the smallest possible competitive ratio
9

Algorithm 1: Buy Immediately

Algorithm: Buy-First-Day
On day 1: Buy skis for B

Analysis:
• Cost: A(d) = B for all d

• If Rd < B: OPT(d) = Rd, so ratio = B
Rd ≤ B

R

• If Rd ≥ B: OPT(d) = B, so ratio = B
B = 1

Competitive ratio: B
R

Remark
This is bad when B/R is large! If you only ski 1 day but buy expensive skis, you waste money compared
to renting.

10

Algorithm 2: Rent Forever

Algorithm: Rent-Forever
Every day: Rent skis for R
Never buy.

Analysis:
• Cost: A(d) = Rd
• If Rd < B: OPT(d) = Rd, so ratio = Rd

Rd = 1
• If Rd ≥ B: OPT(d) = B, so ratio = Rd

B• As d → ∞, ratio → ∞

Competitive ratio: Unbounded! (∞)

Remark
This is terrible for long trips! If you ski for many days, you keep paying R per day when you should have
bought for B.

11

Algorithm 3: Buy After B/R Days

Algorithm: Better-Late-Than-Never
For days 1, 2, . . . , B

R − 1: Rent skis for R per day
On day B

R (if you’re still skiing): Buy skis for B

Intuition:
• Don’t commit early (unlike Algorithm 1)
• Don’t rent forever (unlike Algorithm 2)
• Switch to buying at the “breakeven” point

Cost:

A(d) =
Rd if d < B

R (only rented)
R

(
B
R − 1

)
+ B = 2B − R if d ≥ B

R (rented B
R − 1 days, then bought)

12

Analysis of Better-Late-Than-Never

Recall: A(d) = Rd if d < B
R A(d) = 2B − R if d ≥ B

R OPT(d) = min(Rd, B)

Lemma:
Better-Late-Than-Never is (2 − R

B)-competitive.

Proof
Case 1: d < B

R

• A(d) = Rd = OPT(d), so ratio = 1

Case 2: d ≥ B
R

• OPT(d) = B

• A(d) = 2B − R

• Ratio = 2B−R
B = 2 − R

B

Taking the maximum over all cases: competitive ratio = 2 − R
B

13

Optimality of Better-Late-Than-Never

Question: Can we do better than 2 − R
B?

Answer: No! (For deterministic algorithms)

Exercise: Prove that any deterministic online algorithm for ski rental has competitive ratio at least 2 − R
B .

Hint. Let k be the first day the algorithm buys (set k = ∞ if it never buys). Consider two inputs:
• stop exactly on day k;
• force the trip to last beyond day k.

Compare ALG and OPT in each case and take the worse. Which k minimizes this worst case?

Remark
Note: Randomized algorithms can achieve better competitive ratios! The ski rental problem with
randomization achieves ratio e/(e − 1) ≈ 1.58.

14

New Computational Models ▶
Online Algorithms

Lecture 14

▶ Motivation and Competitive Ratio
▶ Ski Rental Problem
▶ Online Bipartite Matching

Online Bipartite Matching

Setup: Bipartite graph G = (L ∪ R, E)
• Left vertices L are known in advance
• Right vertices R arrive online, one at a time
• When vertex v ∈ R arrives, we see all its edges to L

• Must immediately match v to an available neighbor in L (or leave unmatched)
• Once matched, a vertex in L cannot be matched again

Goal: Maximize number of matches

Offline optimum: Maximum matching in the graph (known optimal from network flow)
Online challenge: Make matching decisions without knowing future arrivals

16

Example: Online Matching

ℓ1

ℓ2

ℓ3

r1

r2

r3

Known Arrive online

Online algorithm’s view:
• r1 arrives: connected to {ℓ1, ℓ2}. Match to one of them?
• r2 arrives: connected to {ℓ2, ℓ3}. Match to one of them?
• r3 arrives: connected to {ℓ3}. Match to ℓ3?

Bad online choice: Match r1 → ℓ2, match r2 → ℓ3, can’t match r3 → 2 matches
Optimal (offline): Match r1 → ℓ1, match r2 → ℓ2, match r3 → ℓ3 → 3 matches (perfect!)

17

Upper Bound for Deterministic Algorithms

Lemma:
No deterministic online algorithm can achieve competitive ratio better than 1

2 for online bipartite matching.

Proof
Setup: L = {ℓ1, ℓ2}, R arrives online
Instance 1:

• r1 arrives, connected to both ℓ1 and ℓ2
• r2 arrives, connected only to ℓ1

To achieve ratio > 1
2 on Instance 1: Need at least 2 matches (since OPT = 2)

This requires: don’t match r1 to ℓ1 (so ℓ1 is available for r2)
Instance 2:

• r1 arrives, connected to both ℓ1 and ℓ2
• r2 arrives, connected only to ℓ2

To achieve ratio > 1
2 on Instance 2: Need at least 2 matches (since OPT = 2)

This requires: don’t match r1 to ℓ2 (so ℓ2 is available for r2)
18

Upper Bound Proof (Continued)
Instance 1:

ℓ1

ℓ2

r1

r2

Instance 2:

ℓ1

ℓ2

r1

r2

Proof
Key observation: In both instances, when r1 arrives, the algorithm sees the exact same information: r1
is connected to both ℓ1 and ℓ2.

Since the algorithm is deterministic: It must make the same decision in both instances when r1 arrives.

But we showed:
• Instance 1 requires: r1 not matched to ℓ1
• Instance 2 requires: r1 not matched to ℓ2

Therefore: Any deterministic algorithm must fail to achieve ratio > 1
2 on at least one of the instances.

19

Alternative Proof: Adversarial Argument

The previous proof can be reframed using an adversary:

Key idea: An adversary constructs a worst-case input instance on the fly by observing the algorithm’s
decisions. The adversary reveals vertices one at a time, choosing what to reveal next based on what the
algorithm has done so far.

Proof
Setup: L = {ℓ1, ℓ2} (known to algorithm)
The adversary will build the instance by deciding which r vertices to send.

Adversarial strategy:
1. Step 1: Adversary reveals r1 connected to both ℓ1 and ℓ2
2. Step 2: Adversary observes the algorithm’s decision and reacts:

• If algorithm matches r1 to some ℓi ∈ {ℓ1, ℓ2}:
• Adversary completes the instance by revealing r2 connected only to ℓi

• Now algorithm cannot match r2 (since ℓi is already taken)
• Result: Algorithm gets 1 match, OPT gets 2 → ratio = 1

2
• If algorithm doesn’t match r1:

• Adversary completes the instance by revealing no more vertices
• Result: Algorithm gets 0 matches, OPT gets 1 → ratio = 0 < 1

2 20

Understanding the Adversarial Proof

Key insight: The adversary is just choosing which of the two instances (from the previous proof) to use
based on the algorithm’s behavior.

Connection to instance-based proof:
• If algorithm matches r1 → ℓ1: adversary picks Instance 1 (where r2 needs ℓ1)
• If algorithm matches r1 → ℓ2: adversary picks Instance 2 (where r2 needs ℓ2)

Remark
Important: Both proofs establish the same impossibility result. The adversarial framing is often more
intuitive and easier to generalize to other problems.

Takeaway: No matter what deterministic strategy the algorithm uses, the adversary can construct an
input that forces competitive ratio ≤ 1

2 .

21

Greedy Algorithm

Can we achieve the 1
2 upper bound?

Algorithm: Greedy Online Matching
When vertex v ∈ R arrives:

• If v has at least one unmatched neighbor in L:
• Match v to an arbitrary unmatched neighbor

• Else: leave v unmatched

Claim: Greedy is 1
2-competitive

Proof strategy: We’ll use LP duality! (note the algorithm doesn’t use duality, it’s just for analysis)
• Relate matching to LP relaxation
• Use dual (vertex cover) to bound optimal matching
• Show greedy achieves at least half of optimal

22

LP Formulation and Duality

Recall from Lecture 12:
Matching LP (Primal):

Variables: xe ≥ 0 for each edge e ∈ E

Maximize:
∑
e∈E

xe

Subject to: For each vertex v ∈ L ∪ R:
∑

e incident
to v

xe ≤ 1

Vertex Cover LP (Dual):

Variables: yv ≥ 0 for each vertex v ∈ L ∪ R

Minimize:
∑

v∈L∪R

yv

Subject to: For each edge e = (u, v) ∈ E:

yu + yv ≥ 1

Remark

Max Matching ≤ Max Matching LP = Min VC LP ≤ Min VC

Proof strategy: Use greedy algorithm’s decisions to construct a feasible vertex cover LP solution. This
provides an upper bound on the optimal offline matching value. 23

Analysis of Greedy Algorithm

Strategy: Define a “pre-dual solution” z based on greedy’s decisions, then scale it up to get a feasible
dual solution y.

Let M be the matching output by greedy.

Define pre-dual solution z: For every v ∈ L ∪ R:

zv =


1
2 , if greedy matches v

0, otherwise

Key observation:
|M | =

∑
v∈L∪R

zv

Why? Each matched edge (v, w) contributes zv + zw = 1
2 + 1

2 = 1 to the sum, and there are |M | such
edges.

24

Pre-Dual Solution Properties

Claim: For every edge (v, w) ∈ E, at least one of zv, zw equals 1
2 .

Proof
Case 1: Edge (v, w) is in matching M

• Then both zv = 1
2 and zw = 1

2

Case 2: Edge (v, w) is not in matching M

• Consider the time w ∈ R arrived online
• If zw = 0, then greedy didn’t match w

• This means w had no unmatched neighbors when it arrived
• In particular, v was already matched when w arrived
• Therefore zv = 1

2

25

Scaling to a Feasible Dual Solution

The claim implies: For every edge (v, w) ∈ E: zv + zw ≥ 1
2

This means z is NOT quite feasible for the dual (which requires zv + zw ≥ 1)

Solution: Scale up by a factor of 2! Define y = 2z:

yv = 2zv =
1, if greedy matches v

0, otherwise

Now y is feasible for the dual:
• For every edge (v, w): yv + yw = 2(zv + zw) ≥ 2 · 1

2 = 1
• All yv ≥ 0

Dual objective value: ∑
v∈L∪R

yv = 2
∑

v∈L∪R

zv = 2|M |

26

Completing the Analysis

What we’ve shown:
• Greedy matching M has size |M |
• Constructed feasible dual solution y with value 2|M |

By weak duality:
OPTmatching ≤ Min dual value ≤ Value of y = 2|M |

Therefore:
|M | ≥ 1

2 · OPTmatching

Lemma:
Greedy online matching is 1

2-competitive for online bipartite matching.

Conclusion: Greedy achieves the best possible competitive ratio for deterministic online algorithms!

27

	Motivation and Competitive Ratio
	Ski Rental Problem
	Online Bipartite Matching

