COS330: Great Ideas in Theoretical Computer Science Fall 2025

%D
///// °

1 e New Computational Models »

DD% Online Algorithms
/ Lecture 14

////// ///// » Motivation and Competitive Ratio

DD D » Ski Rental Problem
DD% %D% » Online Bipartite Matching

. PRINCETON . . .
"8 compurer seience

New Computational Models »
Online Algorithms

Lecture 14

Motivation and Competitive Ratio

Finding the Maximum HHHHH

Problem: Find the maximum element in a list

Offline version: You see the entire list at once
® Scan through, keep track of maximum seen so far
® Return the maximum at the end
* Easy!

Online version: Elements arrive one at a time
® You must immediately and irrevocably decide: select this element or not?
® You can only select one element total
® Goal: Select the maximum element

Challenge: How do you decide without knowing what comes next?

Example: Elements Arriving Online HHHHH

Problem:

* Elements arrive one at a time (you can't see future elements)

* After seeing each element, you must decide: select it or skip it?
® Once you select, you're done (you can only select one element)
® Goal: Select the maximum element in the list

Elements arrive:

v v v v v v v

3715624

v v v v v v v

Key question: How do we measure the quality of our solution when we can’t always be optimal?

Measuring Online Algorithm Performance ‘HHHHH

Idea: Compare online algorithm to optimal offline algorithm (which knows the future)

Value of online algorithm Value of online algorithm

C titive Ratio = =
SIPREEe e Value of optimal offline algorithm Optimal value in hindsight

Goal: Design algorithms with competitive ratio close to 1

Notes:
* For minimization problems: competitive ratio > 1 (online pays at least as much as offline)
* For maximization problems: competitive ratio < 1 (online gets at most as much as offline)
® This is worst-case analysis over all possible inputs

Competitive Ratio: Formal Definition

Consider an online algorithm A for a minimization problem:

Let A(]) denote the cost of algorithm A on input
Let OPT(/) denote the cost of the optimal offline algorithm on input /

Algorithm A is a-competitive if for all inputs I:

A(I) < o - OPT(I)

New Computational Models »
Online Algorithms

Lecture 14

Ski Rental Problem

The Ski Rental Problem HHHHH

Setup: You're going on a ski trip

® You don't know how many days you'll ski
* Each day, you must decide: rent or buy skis?

Costs:
® Renting costs R per day
® Buying costs B (one-time purchase)
® Assume B/R is an integer (for simplicity)

Online constraint: You learn how many days you'll ski only as they pass
¢ Each morning: do you rent or buy today?
® Once you buy, you own the skis (no more rental costs)
® Once you stop skiing, the season ends

Goal: Minimize total cost compared to optimal offline algorithm (which knows the number of days in
advance)

Competitive Ratio for Ski Rental HHHHH

Let d be the total number of days you ski

Optimal offline cost:
Rd if Rd < B (rent all days)

OPT(d) =
(d) {B if Rd > B (buy on day 1)

Equivalently: OPT(d) = min(Rd, B)

For an online algorithm A:
® Let A(d) be the cost when skiing for d days

Algorithm A is a-competitive if:
max A(d) <«
d>1 OPT(d) —

Goal: Find an online algorithm with the smallest possible competitive ratio

Algorithm 1: Buy Immediately il

Algorithm: Buy-First-Day

On day 1: Buy skis for B

Analysis:
e Cost: A(d) = B for all d
* If Rd < B: OPT(d) = Rd, so ratio = 2 < &
° If Rd > B: OPT(d) = B, soratio =3 =1

Sy o]

=

Competitive ratio:

This is bad when B/R is large! If you only ski 1 day but buy expensive skis, you waste money compared
to renting.

10

Algorithm 2: Rent Forever HHHHH

Algorithm: Rent-Forever

Every day: Rent skis for R
Never buy.

Analysis:
* Cost: A(d) = Rd
* If Rd < B: OPT(d) = Rd, so ratio = ¢ = 1
* If Rd > B: OPT(d) = B, so ratio =

B
® As d — oo, ratio — oo

Competitive ratio: Unbounded! (o0)

This is terrible for long trips! If you ski for many days, you keep paying R per day when you should have
bought for B.

11

Algorithm 3: Buy After B/R Days

Algorithm: Better-Late-Than-Never

For days 1,2,..., % — 1: Rent skis for R per day
On day % (if you're still skiing): Buy skis for B

Intuition:
® Don't commit early (unlike Algorithm 1)
® Don't rent forever (unlike Algorithm 2)
® Switch to buying at the “breakeven” point

Cost:

(only rented)

A(d) = Rd if d <
B (rented % — 1 days, then bought)

R(2-1)+B=2B-R ifd>

=
=] [swpavlfey

12

Analysis of Better-Late-Than-Never ‘HHHHH

Recall: A(d) =Rdifd<% A(d)=2B—-Rifd>% OPT(d) = min(Rd, B)

Lemma:

Better-Late-Than-Never is (2 — 3%)-competitive.

=y

Case 2: d > 2
* OPT(d)=B
* A(d)=2B—-R
* Ratio =22 =2_1&
Taking the maximum over all cases: competitive ratio = 2 — %]

13

Optimality of Better-Late-Than-Never ‘HHHHH

Question: Can we do better than 2 — %?

Answer: No! (For deterministic algorithms)

Exercise: Prove that any deterministic online algorithm for ski rental has competitive ratio at least 2 — %.

Hint. Let k be the first day the algorithm buys (set k£ = oo if it never buys). Consider two inputs:
® stop exactly on day k;
e force the trip to last beyond day k.

Compare ALG and OPT in each case and take the worse. Which k& minimizes this worst case?

Note: Randomized algorithms can achieve better competitive ratios! The ski rental problem with
randomization achieves ratio e/(e — 1) ~ 1.58.

14

New Computational Models »
Online Algorithms

Lecture 14

Online Bipartite Matching

Online Bipartite Matching HHHHH

Setup: Bipartite graph G = (LUR, E)
e |eft vertices L are known in advance

Right vertices R arrive online, one at a time

® When vertex v € R arrives, we see all its edges to L

Must immediately match v to an available neighbor in L (or leave unmatched)
Once matched, a vertex in L cannot be matched again

Goal: Maximize number of matches

Offline optimum: Maximum matching in the graph (known optimal from network flow)
Online challenge: Make matching decisions without knowing future arrivals

16

Example: Online Matching ‘HHHH

Known (4 2) Arrive online

Online algorithm'’s view:
® 7y arrives: connected to {/1,/¢>}. Match to one of them?
® 19 arrives: connected to {/s, ¢3}. Match to one of them?
® r3 arrives: connected to {/3}. Match to /37

Bad online choice: Match r; — ¢5, match ro — f3, can't match r3 — 2 matches
Optimal (offline): Match r; — ¢;, match ro — {5, match r3 — ¢3 — 3 matches (perfect!)

17

Upper Bound for Deterministic Algorithms HHHHHH

Lemma:

No deterministic online algorithm can achieve competitive ratio better than % for online bipartite matching.

Proof
Setup: L = {/1,/¢5}, R arrives online

Instance 1:
® ry arrives, connected to both ¢; and /¢
® 7y arrives, connected only to /4
To achieve ratio > ; on Instance 1: Need at least 2 matches (since OPT = 2)
This requires: don't match 71 to ¢; (so ¢; is available for r5)
Instance 2:
® r; arrives, connected to both ¢; and /,
® 7y arrives, connected only to /5

To achieve ratio > ; on Instance 2: Need at least 2 matches (since OPT = 2)

This requires: don't match 71 to ¢5 (so /5 is available for r5)
18

Upper Bound Proof (Continued)

Instance 1: Instance 2:

@ @
@ @&
Proof

Key observation: In both instances, when ry arrives, the algorithm sees the exact same information:
is connected to both ¢; and /5.

Since the algorithm is deterministic: |t must make the same decision in both instances when r; arrives.

But we showed:
® Instance 1 requires: r; not matched to ¢;
® Instance 2 requires: 1 not matched to /¢

Therefore: Any deterministic algorithm must fail to achieve ratio > % on at least one of the instances. ||
19

Alternative Proof: Adversarial Argument HHHH‘HH

The previous proof can be reframed using an adversary:

Key idea: An adversary constructs a worst-case input instance on the fly by observing the algorithm's
decisions. The adversary reveals vertices one at a time, choosing what to reveal next based on what the
algorithm has done so far.

Setup: L = {/1,/5} (known to algorithm)
The adversary will build the instance by deciding which 7 vertices to send.

Adversarial strategy:

1. Step 1: Adversary reveals r; connected to both ¢; and /s

2. Step 2: Adversary observes the algorithm's decision and reacts:
* If algorithm matches r; to some ¢; € {(;,(5}:

® Adversary completes the instance by revealing ry connected only to /;
® Now algorithm cannot match 75 (since ¢; is already taken)
® Result: Algorithm gets 1 match, OPT gets 2 — ratio = %

¢ If algorithm doesn’t match r;:

® Adversary completes the instance by revealing no more vertices
® Result: Algorithm gets 0 matches, OPT gets 1 — ratio =0 < %
20

Understanding the Adversarial Proof HHHHH‘

Key insight: The adversary is just choosing which of the two instances (from the previous proof) to use
based on the algorithm's behavior.

Connection to instance-based proof:
e If algorithm matches r; — ¢1: adversary picks Instance 1 (where 75 needs /1)
o If algorithm matches r; — ¢5: adversary picks Instance 2 (where 75 needs /)

Important: Both proofs establish the same impossibility result. The adversarial framing is often more
intuitive and easier to generalize to other problems.

Takeaway: No matter what deterministic strategy the algorithm uses, the adversary can construct an
input that forces competitive ratio < % []

21

Greedy Algorithm il

Can we achieve the % upper bound?

Algorithm: Greedy Online Matching

When vertex v € R arrives:
¢ If v has at least one unmatched neighbor in L:
¢ Match v to an arbitrary unmatched neighbor

e Else: leave v unmatched
Claim: Greedy is 3-competitive

Proof strategy: We'll use LP duality! (note the algorithm doesn’t use duality, it's just for analysis)
¢ Relate matching to LP relaxation
¢ Use dual (vertex cover) to bound optimal matching
® Show greedy achieves at least half of optimal
22

LP Formulation and Duality HHHH‘H

Recall from Lecture 12:

Matching LP (Primal): Vertex Cover LP (Dual):

i : >
VTR = U ir caeh clge e € B Variables: y, > 0 for each vertex v € LU R

Maximize: > x. S
E Minimize:) v,

veLUR
Subject to: For each vertex v € L U R:

T, <1
ein%%ent ©- yu+yv Z 1

tov

Max Matching < Max Matching LP = Min VC LP < Min VC

Subject to: For each edge ¢ = (u,v) € E:

Proof strategy: Use greedy algorithm's decisions to construct a feasible vertex cover LP solution. This
provides an upper bound on the optimal offline matching value. 23

Analysis of Greedy Algorithm ‘HHHH

Strategy: Define a “pre-dual solution” z based on greedy's decisions, then scale it up to get a feasible
dual solution y.

Let M be the matching output by greedy.

Define pre-dual solution z: For every v € L U R:

. %, if greedy matches v
v T c
0, otherwise

Key observation:

|M|: >

veELUR

Why? Each matched edge (v, w) contributes z, + z, = 5 + £ = 1 to the sum, and there are |M| such
edges.

24

Pre-Dual Solution Properties HHHHHH

Claim: For every edge (v,w) € E, at least one of z,, z, equals 3.

Proof

Case 1: Edge (v, w) is in matching M

¢ Then both z, = % and z, = %

Case 2: Edge (v, w) is not in matching M
® Consider the time w € R arrived online

If 2z, = 0, then greedy didn't match w

This means w had no unmatched neighbors when it arrived

In particular, v was already matched when w arrived

Therefore z, = %

25

Scaling to a Feasible Dual Solution ‘HHHH

The claim implies: For every edge (v,w) € E: 2, + 2, > 5

This means z is NOT quite feasible for the dual (which requires z, + z, > 1)

Solution: Scale up by a factor of 2! Define y = 2z:

1, if greedy matches v
Yv = 221; = .
0, otherwise

Now y is feasible for the dual:

* For every edge (v,w): Yo+ yu = 2(20 + 20) > 25 =1
o All y, >0

Dual objective value:

o y=2 > z,=2|M|

veELUR veELUR

26

Completing the Analysis HHHHH

What we’ve shown:

® Greedy matching M has size | M|
e Constructed feasible dual solution y with value 2| |

By weak duality:
OPT matching < Min dual value < Value of y = 2| M|

Therefore: 1
|M| > 5) OPTmatching

Lemma:

Greedy online matching is %—competitive for online bipartite matching.

Conclusion: Greedy achieves the best possible competitive ratio for deterministic online algorithms!

27

	Motivation and Competitive Ratio
	Ski Rental Problem
	Online Bipartite Matching

