


Approx· Algorithms using LPs ·

Recalls
# to design an approx algorithmg
We need a certificate

of
-

OPT for max
upper

bound on prob

lower bound on
OPT for min

prob

↑ this certificate , unlike OPT

itself , should be fundable efficiently
*We then try to fund a solution

Cusually by tenkering thecertificate)



that competes with the certified
bound on OPT.

->El for
max prob

to get an defactor approx
for

max problem , want

quality (solution) 7/ d oCertified upper
bound)

↑x

to get a C-factor approx
.

moni problem, want :

Cost (Solution) C : (Certifiedund
erg . maximal matchings

as

-

certificates for Vertex Cover



e .g
. timearprogramming relaxation
=

value as a certificate for
-

Vertex Cover.

Given G .(VIE), consider

the linear program
in

Variables for
eacher
-

DECEl Fuel

·



this is a linear program
because

1) constraints are linear-
inequalities in

vars

-

2) objective is linear fur

in the vars

Eat LPs of N
variables & M

constraints can be
solved in time

poly (MN)
.

De : Objective valueof an
optimal LP solution.



Why is LP
value a certificate on

OPT ?

because integral solution (= true
solt)

is always feasible fur
the LP

Lemma : Lets be a Vertex
-

cover of G . Let= lifuts

&= 0 otherwise. Then

satisfies the
constraints of the

LP .

Prof Clearly OEXuEl
FuEU.

for any edgeCut See



at least one of norv is in s.

-

Since true Vertex covers are

feasible solutions &
LP minimizes

over a larger space
redpoints = true VCs . Fiblack polygon = Space -
that LP minimizes

over

vollary
LP-value (G) [UPT(G) .



Then, you
saw a rounding that

takes Li solution & funds a VC

with cost = 2 . LP-value

-

This method of design of approx
.

algorithms is incredibly general

los of applications
.

Many
cool ideas

Today) Applicationto
2) "Randomized" Rounding



CCNF7SAT

-INPUTAcollectionofORs

OR-clause = <xVVCNV...)
↓ ↓

variable negated var

"literal"= variables or their

negation.

"Width of an OR-clause
"

= numberof literals in

it .

Grinda satisfying assignment



findan assignment that

satisfies as many
clauses as

possible. ↳
"MAX-SAT"

#KSAT :
all clauses of

width exactly K

width K
[K-SAT :

SAT : no width
constraint

Today: approx algorithms for
MAX-SAT-



BASELINE or easy algorithms
-

Lemma : For any assignment ,
lett be its negation.

For any
OR-clause, at leastone

Fx&I satisfy it.

Proofs take any
literal in the

-

clause. Then it
is true in

at least oneof &Ct
-

D

Corollary : There is a (super-easy
E-approx algorithm for MAX-SATI



Proof,
-

Algo : )takeany E50,
13

2) output cc if it satisfies
more clauses than

IC
,

ow output I

Laim? At least one
of x&

Satisfies 7/

Prof: For each clause C ,
let

((x) = 1 if X sat C

E -Ow
Then ((x) + ((x) > /FC .



↳:
[x +((x) > m

200 for are
of X or

[C(X)7/m
C

B

Well
,
that was easy

· Can we

best it ? Whatwasthe certificate
here?

Let's start small and do

MAX 1-SAT

All clauses have one literal



So the input looks like :
Some copiesof Xe

For each ig
some copies ofTi

What's a good algorithm ?

"Greedy" : Set to true if-

more cc-clauses thaniclauses.

how well does this do ?

If s-clauses &Ciclauses
are equal in number, then,
this algo satisfies exactly



Clauses :

Which seems same as the previous

one. Or is it....?

What is OPT ???

Lemma : thegreedy algorithm
-

finds an optimal assignment for
MAX 1-SATI

Proof WLOG assume that
-

for each i, there areE frac

of xi-clauses. Note thatthis



is WLOG because if this is

not true for some is we simply
treati as a variable

(&

Ci as its negation).



Lessons need a
better certificate

for OPT to beatt-approx for

MAX1-SAT !
-

Let's do MAX
ISAT how.

Here I'll first
show you one

more

trivial" algorithm

#GO (RANDOM
ASSIGNMENT)

E
1 w - p

- E
Set=

o wp. I

independently for each KIIU.



Our algorithm is now radom.

We've learned enough to not betwo

scared of that!

What is the fraction of clauses
that

this algorithm satisfies
?

this is a random
variable . So we

will compute its expectation /average

Lemma : Fix any
MAX1-SAT

-

instance. LetX be the number

of clauses satisfied by a
random

assignment. Then,



E[XT = m . (1 -24)
:= m

.k

[today inshort

I fo
X= 2 tif

Cistere

Then X =IX
by linearity of expectations
E(X) = [E[Xc]

Xc is an indicator random



variable. So ESXc)=Pr[X]

C has k variables

Thereare 2 possible distinct

valuesto this K-taple.

All are equally likely
in

All but 1 (the
all literals false

assignment SatisfyC
.

So: Pr(X=D=
= 1-24 .

i

So random assignment is dx-approx.
for MAX-KSAT . (What's the certificate ?)



For K= 1
,
this ist. We know

how to beat that.

For K=2 , this is ·

which is

Lettertent
In fact this algorithm gets

-leasKgs-SAT ?

now there are
1-clauses & 2-clauses.

For 1-clauses greedy gets 1-approx
,

but no clear meaning of greedy for



2-clauses

For 2-clauses, random assignmentgets

34 but random assignmentgetsonly

E for 1-clauses

Can weget bestof
both worlds ?

Next: A 3-approx for MAXI-SAT
.

Linear Program for
MAXE2-SAT

Key Message
: Linear programming relaxations
-

not be obvious. Sometimes multiple
may

choices are possible· Requires thought
.

good
Let's build towards the LP slowly.

A natural set of variables is



Y1 , Y, -- ; Un :

These "stand for" the truth assignment
.

We want to encode
the constraint that

is take
value in 2013.

But need to allow fractional values
to

make it a linear inequality
Constraint.

Soi
ObiEl frien

-()

Next suppose we
want to encode

that a 1-clause
C is satisfied.

C = Ci or C
=i for some

i

Csatif Xi= 1) (satif Xi=0)

- 7
encoding : Yi= 1 Yi= 0 -

E 1-Yi= 1



What about 2-clauses ?

C= X:Vxj
say.

Them: C is sat if Xi
= 1 or Xj=

or both are 1
-

linear relaxation : Yi+ Y;
Y)

C=IVj

(- Yi) + yjx)

=Vij
Yi+ (-yj)y)

C= T
(1-yi)+ (-yj)x



If we write the constraints
above,

one for every clause in
the inputs

we encode
the relaxation for the

problem :

"fund a satisfying assignment for
the input [2-SAT

instance
"

But we have no reason to assume

that the emput formula is satisfiable
So our LP may

not be flexible

CIf we run a LP-solver, it may

just output "no solution found")

KeyIdeas Suppose foreachC



We new if I is satisfied
in an optimal assignment.
Then
,
wecould write the

the

above constraints only for
the

C we know are satisfied
&

Ignore the
others

But we do not know
this

-

information (duh !

So, we
make variables for

it !!!



Ej = 1 if Cis sat

O ow

Wecan now write
the

constraints in torms of Z

If C is satisfied
:

1-clause , Xi : Yi=z

Fi (-Yi)=z

2-clause : xiV; githjE

ECIVI (-Yi) +yj7/z

:
- (2)



Amazingthery : If is not
Sat (ZE=O) , the

above

constraints are always satisfied
by any yeto , 13 "

So we can put the above
constraints

for every C.



Butwe now need to relax
Z
,
to be in an interval

too
Of ZcEl FC .

-(3)

Finally we want
to maximize

the # of sat clauses
:

max Ez - (4)

So our fend LP
maximize (4)

Sit . Constraints (1),
(2)
,
(3)

are satisfied.



Lemma : Let c be an
-

assignment that satisfies
m

clauses. Theng there are

y-YnEcce<m
S .t . 3

,
7 satisfy (1 ,21 ,

(3)

& Ez= m
!

*

Proofo,
we give

values to y &z
X-

- Y= Vi

Zc1 if X
* satisfie
clauseC

easy to
check Ezz= m !
·giE) ,Dezel



foreach clause, wecan verity that
constraints (2) hold.

- "feasibility" P

Corollary :-
LP-value I, OPT

this gives us our certificate

Rounding -> Randomized Rounding

InterpretIn
inTo , is to be

probabilities.

Rounded truth assignment :



↑i7W
independently

This is a randomized algo

Let X be the random

variable that counts the

number of satisfied clausesy
31 .

As before X= EX
↓

indicator ofwhether
C is satisfied



Our goal :
Lemmas (E[X] LPOPT
-

Edea: Let (yE be an

optimal LP
solution

LP-OPT= EZ
Wewill prove for every

C

Llam : IE[X]
Z

We are then doneby linearityo



Proof ofClaims
-

Lett be a 1-clause
.

Say C
= Cir

Then , IPr[Xc
=D = Y

So E[Xc)= Y

On the other
hand, we know

LP solution satisfies

S=Z
So E[X]= zipEE
donein this case.



The case of C= It is similar.

Next
,
more interestinglyglet

hea 2-clause.

4-cases

C = x Vx; (ay)

IPr[CisSat]
= Pr[xor(j= )

= 1- Pr[c=0xj
=)

= 1- IPr[x=o) · Pr[Xj=0)
↳ independences

X*2x5



= 1- (1- yE) · (1-yj))
= Y+ yj-yyj -G
We need to prove

that (H) is

A

- least,

from LP constraints,
we
have

+ Z
zminky, since
otherwise encreasing raises
the iP value

while satall constrat

() Subtracts something from 24
·

how large can this subtracted off be?



how large can this
subtracted quantitybe

?

Lemma for any a , b :

we have ab =(
4 inequalityProofs this is the "AM-GM

-

but has a simple proof
. Observe

4ab = (a+b)
= (a-b)

-

so : ab = ty(atb) ((a-b) 2

[t(a+b) 2 since

2nd term is 78-



So the subtracted off quantity

Y
8: Pr(XED = gity5-yiy,

7y-2
4

Now : 2-cases
-

DYy[1 .

In this case =Y+Y

IPr(Xc= D >, Y+Y
= z=-z4



quere-4

is tinier
= ↳z

2g+ y5x
In this case Z

= 1.

& (y+Y,)-
4

> Min1 ,23
a- a/4

at a= 1 : 314

a= 2 : 1

derivative : 119/220 Fat (1,2)



So function a -aYy is

increasing on [1 1 23.

Thus a-a24 over (1 ,2)
is minimized at a

= 1

& equals 34
Thus in this case : Z

=

IPr[Xc=D > 3/4

B


