
COS 330 - Lecture 13

Matt Weinberg

October 27th, 2025

These notes may contain errors, and any errors are the fault of the author. See Section 6 for
the sources from which these notes were derived.

1 Linear Programming
Here is a motivating example to have something concrete in mind:

Example 1 (Smoothies). Say you have a stock of 3 oranges, 10 bananas, and 6 strawberries. You
can make and sell 3 kinds of smoothies:

Smoothie Type 1 Smoothie Type 2 Smoothie Type 3
Orange-Banana Strawberry-Banana Citro-Bananaberry

Ingredients 1 Orange 1 Orange
per Liter 2 Bananas 1 Banana 1 Banana

2 Strawberries 1 Strawberry

Profit 5 Dollars/Liter 4 Dollars/Liter 6 Dollars/Liter

How should you turn your fruits into smoothies in order to maximize your profit? You can make
and sell fractions of liters of smoothies (e.g. you can sell 3/5 liters of Orange-Banana smoothies to
get 3 dollars), but you cannot make or sell negative smoothies (e.g. you can’t pay to get the fruits
back that you would’ve used for a smoothie).

Remark. The smoothies example is exactly the following problem: define the variables xi ∈ R to
be the number of liters of Smoothie Type i that you will make. Then your objective is to

maximize 5x1 + 4x2 + 6x3 , your total profit.

However, you have a few constraints. The variables x1, x2, x3 must satisfy

1x1 + 1x3 ≤ 3 , or you will run out of oranges;
2x1 + 1x2 + 1x3 ≤ 10 , or you will run out of bananas;

2x2 + 1x3 ≤ 6 , or you will run out of strawberries

x1, x2, x3 ≥ 0 , since you cannot make negative liters of smoothie.

So our problem is maximizing a linear objective function subject to three linear constraints (plus
that all variables are non-negative). In this class, we will not discuss how to go about solving this
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(in case you are interested, look for “simplex method”). But let’s say someone hands you a solution
and claims that it is optimal. How would you go about trying to prove that you cannot do better?

Specifically, I will claim that the optimal solution is to make 3 liters of orange banana and 3
liters of strawberry banana (x1 = 3, x2 = 3, x3 = 0). This gives you profit 27. Observe also that
this uses 3 oranges, 9 bananas, and 6 strawberries, so it is feasible. But how do I know I cannot
do better? I might be concerned that I can do better because I have a leftover banana, or because
maybe I can make better use of my strawberries and oranges.

Here is a proof that I cannot do better:

• Any feasible solution satisfies both the inequalities x1 + x3 ≤ 3 and 2x2 + x3 ≤ 6, the
constraints on our orange usage and strawberry usage.

• Therefore, any feasible solution satisfies a positive linear combination of these constraints:

5 × [ x1 + x3 ≤ 3 ]

2 × [ 2x2 + x3 ≤ 6 ]

5x1 + 4x2 + 7x3 ≤ 27

• Finally, since any feasible solution satisfies x3 ≥ 0, we have

Profits = 5x1 + 4x2 + 6x3 ≤ 5x1 + 4x2 + 7x3 ≤ 27 .

This proves that our original solution is optimal! But how did we do this? How did we magically
guess to add up five times the orange constraint plus twice the strawberries constraint? This is a
special case of a more general concept called linear programming duality, which is the focus of the
rest of this lecture.

2 LP Duality
Consider generally a linear program (LP) of the form:1

max
∑
i

cixi

s.t.
∑
i

Ajixi ≤ bj ∀j

xi ≥ 0 ∀i .

We will call this the primal LP. We call x⃗ a primal solution, and our goal is to find a primal solution
that maximizes our objective, subject to the feasibility constraints.

On the other hand, we also need to think about how to prove that a solution is optimal once we
find it. That is, we need to think about searching for good upper bounds on how good a primal can
possibly be. This is called the dual problem. How can we derive an upper bound on how good a
primal can possibly be? We will follow the approach suggested by the smoothies example.

1If you’re used to matrices and find the expression
∑

i Ajixi odd, note that it’s the same as
∑

i Aijxj , the one you
might have expected. We index rows by j to emphasize they correspond to constraints.
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x1 x2 x3 x4 x5

A11 A12 A13 A14 A15 b1

A21 A22 A23 A24 A25 b2

A31 A32 A33 A34 A35 b3

A41 A42 A43 A44 A45 b4

A51 A52 A53 A54 A55 b5

c1 c2 c3 c4 c5

Table 1: A visualization of the form of an LP. The i’s range across the columns and index the
variables x1, . . . , x5, and the j’s range across the rows and index the inequalities. The objective
function and constraints read by multiplying the variable xi with the coefficients in its correspond-
ing column, then summing across rows.

Consider the following: if we have a weight wj ≥ 0 for each inequality j, and take a linear
combination of the feasibility constraints, we may directly conclude that any feasible x⃗ must satisfy∑

j

wj

(∑
i

Ajixi

)
≤

∑
j

wjbj . (1)

In our example, for instance, by summing the orange and strawberry constraints we can see that we
must have x1 + 2x2 + 2x3 ≤ 9 for any feasible combination of smoothies. This is certainly cool,
but does not appear particularly useful, as it tells us nothing about how much profit we can possibly
make. We further saw, however, that if we chose w1 = 5, w2 = 0, w3 = 2, then we got something
interesting.

More generally, if we happen to have chosen our wj’s so that
∑

j wjAji ≥ ci for all i and
wj ≥ 0 for all j, we are in business! This is because we could then conclude that∑

i

cixi ≤
∑
i

(∑
j

wjAji

)
xi =

∑
j

wj

(∑
i

Ajixi

)
≤

∑
j

wjbj ,

where the first inequality follows from
∑

j wjAji ≥ ci and xi ≥ 0, the equality simply exchanges
order of summation, and the last inequality follows from (1) (because wj ≥ 0).

This means that any set of weights wj which satisfy
∑

j wjAji ≥ ci for all i and wj ≥ 0 for
all j yields a valid inequality of the form

∑
i cixi ≤

∑
j wjbj . This exactly reads off as an upper

bound of
∑

j wjbj on how good any feasible solution can possibly be!
So now, we can think of the following “dual” approach: search over all weights wj to find the

ones that minimize
∑

j wjbj , subject to the constraints
∑

j wjAji ≥ ci for all i and wj ≥ 0 for all
j. The constraints matter because if they aren’t satisfied, then

∑
j wjbj doesn’t actually guarantee

an upper bound on the primal.

Notice that this itself is another linear program:

min
∑
j

wjbj

s.t.
∑
j

wjAji ≥ ci ∀i

wj ≥ 0 ∀j .
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This is called the dual LP.

x1 x2 x3 x4 x5

w1 A11 A12 A13 A14 A15 b1

w2 A21 A22 A23 A24 A25 b2

w3 A31 A32 A33 A34 A35 b3

w4 A41 A42 A43 A44 A45 b4

w5 A51 A52 A53 A54 A55 b5

c1 c2 c3 c4 c5

Table 2: The visualization in Table 1 with the weight variables from the dual LP included. Again,
the i’s range across the columns and index the variables x1, . . . , x5 of the primal. However, notice
also that the i’s index the inequalities of the dual. Similarly, while the j’s range across the rows
and index the inequalities of the primal, they also index the variables w1, . . . , w5 of the dual (this
makes sense, because our initial interpretation of the wj were as weights being multiplied to each
inequality of the primal). The objective function and constraints of the dual read by multiplying the
weight variable wj with the coefficients in its corresponding row, then summing across columns.
The primal and dual LPs are thus closely connected.

Check Your Understanding.

• Why did we insist that
∑

j wj · Aij ≥ ci for all i? Think of this as a “usefulness constraint”.
If this fails for some i, then we don’t necessarily learn anything about how good the primal
can be.

• Why did we insist that wj ≥ 0 for all j? Think of this as a “validity” constraint”. If this fails
for some j, then we just multiplied an inequality by a negative number, which results in an
invalid inequality.

Exercise (Dual of the dual). Verify that the dual of the dual LP is the primal LP itself.

Note that we have already proved that every feasible solution of the dual provides an upper
bound on how good any primal solution can possibly be (also known as Weak LP Duality). Magi-
cally, this turns out to be a complete approach to proving bounds! If the optimum of the primal LP
is some finite value x, then there exists a solution to the dual LP that has value x as well.

In other words, if the primal LP has a finite optimal value x, there exists a proof using linear
combinations of the constraints (such as the proof we gave for the smoothies example) proving that
x is optimal.

Theorem 2 (Strong LP Duality). Let LP1 be any maximization (resp., minimization) LP and let
LP2 be its dual, which is a minimization (resp., maximization) LP. Then if the optimum of LP1 is
finite, then the optimum of LP2 is also finite, and they are equal.

You do not need to know the proof of Strong LP Duality for the course, but if you are interested,
see Anupam Gupta’s scribed lecture notes here.
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3 Cool, what now?
We’ll now use LP duality to prove something interesting. Recall the following two concepts:

Definition 3 (Matching). Given a graph G = (V,E), a matching is a subset of edges M ⊆ E such
that no node v ∈ V appears in multiple edges e ∈ M . That is, for all v ∈ V , |{e ∈ M, v ∈ e}| ≤ 1.

Definition 4 (Vertex Cover). Given a graph G = (V,E), a vertex cover is a subset of vertices
C ⊆ V such that all edges e ∈ E have at least one endpoint in C. That is, for all e ∈ E,
|e ∩ C| ≥ 1.

We will now go through the following exercise:

1. Write an Integer Program for the max-weight matching.

2. Relax it to a Linear Program.

3. Take the Dual Linear Program.

4. Add Integrality constraints, and observe that this is exactly the minimum Vertex Cover.

5. Stare at a related chain of inequalities, and see what we can conclude from it.

First, we claim that the following Integer Program exactly captures the max-weight matching
in G:

Maximize
∑
e∈E

xe, such that:∀v ∈ V,
∑
e, v∈e

xe ≤ 1

∀e ∈ E, xe is a non-negative integer.

Here’s a quick side-question – why is it OK to only constrain xe to be an integer instead of
further constraining xe ∈ {0, 1}? Why won’t we accidentally wind up with xe = 2?2

We’ll refer to the value of the optimal solution to this Integer Program as MM(G). The LP
relaxation is as follows:

Maximize
∑
e∈E

xe, such that:∀v ∈ V,
∑
e, v∈e

xe ≤ 1

∀e ∈ E, xe ≥ 0

We’ll refer to the value of the optimal solution to this Linear Program as LP (G). Its Dual is as
follows. In taking the dual, recall:

1. We make a variable for each constraint, and there is a constraint for every v ∈ V . So let’s
make a variable yv for the constraint corresponding to v.

2. We want the RHS of our mega-constraint to be as small as possible, so we want to minimize∑
v∈V yv.

2Answer: because the inequality above implies xe ≤ 1 for all e ∈ E.
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3. Our mega-constraint is useful if and only if the coefficient of each xe in our mega-constraint
exceeds 1 (its coefficient in the the objective function of MLP). This is tricky to think through
– if Ave denotes the coefficient of xe in the equation for node v, the coefficient of xe in our
mega-constraint is

∑
v yv · Ave. What is this?

• Well, Ave = 0 whenever v /∈ e, and Ave = 1 whenever v ∈ e. So this simplifies to:∑
v yv · Ave = yv + yu when e = (u, v).

• Therefore, our mega-constraint is useful if and only if yu+yv ≥ 1 for all e = (u, v) ∈ E.

4. And that’s it! So we get the Dual LP as:

Minimize
∑
v∈V

yv, such that:∀e ∈ E, yu + yv ≥ 1

∀v ∈ V, yv ≥ 0

We’ll call this DLP (G). Finally, let’s insist that each yv is integral and see what happens.

Minimize
∑
v∈V

yv, such that:∀e ∈ E, yu + yv ≥ 1

∀v ∈ V, yv is a non-negative integer

We’ll call this V C(G). Now, we claim that V C(G) is exactly the minimum Vertex Cover of G!
To see this, observe that any {0, 1}-solution to the above IP is indeed a Vertex Cover (because at
least one node from each edge is in the cover), and that every Vertex Cover is a {0, 1}-solution to
the above IP. Why is it OK that we didn’t constrain yv ∈ {0, 1}? Why won’t the optimal solution
have yv = 2?3

Now, we claim the following interesting chain of inequalities:

MM(G) ≤ LP (G) ≤ DLP (G) ≤ V C(G).

MM(G) ≤ LP (G) simply because MM(G) only has integral solutions, whereas LP (G) can
have fractional solutions. LP (G) ≤ DLP (G) due to Weak LP Duality. And DLP (G) ≤ V C(G)
again simply because V C(G) is restricted to integral solutions whereas DLP (G) can use fractional
solutions.

So all together, this establieshes that for all graphs G, the maximum matching is at most the
minimum vertex cover. Cool, but there’s a simpler way to prove this.4 What’s cooler about this
proof is the following:

• Is it possible that MM(G) = LP (G) for all graphs? No.5 But, it turns out that MM(G) =
LP (G) for all bipartite graphs G!6

• Is it possible that LP (G) = DLP (G) for all graphs? Yes, by Strong LP Duality!

3Answer: in this case, it is feasible in the IP to set yv = 2. But, any optimal solution will never do this, because if
a solution is feasible with yv = 2, it is certainly feasible to update yv = 1, which strictly improves the objective.

4Every matching of size C witnesses a set of C edges such that no node can cover more than one edge from this
set. Therefore, at least C distinct nodes must be used to cover them.

5Example: consider a triangle. Then the max-matching is 1, but LP (G) = 3/2 by setting each xe = 1/2.
6This is a consequence of the Birkhoff-Von Neumann Theorem.
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• Is it possible that DLP (G) = V C(G) or all graphs? No.7 But, it turns out that DLP (G) =
V C(G) for all bipartite graphs G!8

• So, after doing a little bit of graph theory, we can conclude that MM(G) = V C(G) for all
bipartite graphs G! Importantly, LP (G) = DLP (G) for all graphs G by strong LP duality,
and whether or not MM(G) = V C(G) depends entirely on whether MM(G) = LP (G)
and DLP (G) = V C(G).

4 Minor extensions
Note: This was not covered in lecture, but it is a good “Check your understanding” exercise to see
if you can read this on your own.

Just to get some more comfort with duals, let us consider the following minor extension, which
works even when a linear program is not exactly of the form we described earlier. It is also the
form we will use in next lecture. Specifically, we consider a linear program of the form:

max
∑
i

cixi

s.t.
∑
i

Ajixi ≤ bj ∀j ≤ m∑
i

Ajixi = bj ∀j > m

xi ≥ 0 ∀i ≤ n .

The difference is that some constraints are now equalities instead of inequalities, and some variables
are allowed to be negative.

Observe that we can write any LP of this form in the same format as the original; we just need to
write two inequalities for each equality constraint (

∑
i Ajixi ≤ bj and

∑
i −Ajixi ≤ −bj), and for

all unconstrained xi, replace it by two variables x+
i , x

−
i ≥ 0 to represent the positive and negative

components of xi. Then we can replace xi by x+
i − x−

i .
Alternatively, we can just start from scratch and go through the same reasoning. What changes

from our previous approach?

• First, we previously insisted that the weight wj for constraint j satisfy wj ≥ 0, because if we
multiply an inequality by a negative number, we have to flip the sign. But for an equality,
we can take negative multipliers just fine.

• Second, we previously declared a linear combination to be a valid upper bound on our objec-
tive as long as

∑
j wjAji ≥ ci for all i. This is true as long as xi ≥ 0. But if xi is allowed to

be negative, we need to get the coefficient exactly right, and require
∑

j wjAji = ci.

7Example: consider a triangle. Then the min vertex cover is 2, but DLP (G) = 3/2 by setting each yv = 1/2.
8We omit a proof of this, but here is a randomized rounding scheme: pick z uniformly at random from [0, 1]. For

all left-hand nodes with yv ≥ z, add them to the cover. For all right-hand nodes with yv ≥ 1 − z, add them to the
cover. Then: (a) this is definitely a vertex cover (because for all e = (u, v), we had yu + yv ≥ 1, so either yu ≥ z
or yv ≥ 1 − z, and (b) the expected size is exactly the same as DLP (G), because each node v is in the cover with
probability exactly yv . Therefore, there must be an integral vertex cover that’s at least as good as DLP (G) (and in
fact, all integral covers resulting from this rounding scheme must be exactly as good as DLP (G), because the expected
value is DLP (G) but no vertex cover can be strictly better, so they must not be strictly worse either).
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One can indeed derive these by using our “standard form dual” as a black box, with the modifica-
tions in the above paragraph, but it is illustrative to see both ways. In any case, the dual for LPs of
the above form is as follows:

min
∑
j

wjbj

s.t.
∑
j

wjAji ≥ ci ∀i ≤ n∑
j

wjAji = ci ∀i > n

wj ≥ 0 ∀j ≤ m .

Check Your Understanding.

• Why is it OK to have an inequality for i ≤ n, but we need equality for i > n? This is because
xi ≥ 0 for i ≤ n, and not necessarily for i > n. When we know that xi ≥ 0, we know that
c′ixi ≥ cixi whenever c′i ≥ ci. But if we don’t know that xi ≥ 0, then it could be that c′i ≥ ci
but c′ixi < cixi, and then we don’t learn anything useful about the primal. Still, if c′i = ci,
than c′ixi = cixi no matter what xi is.

• Why did we need wj ≥ 0 only for j ≤ m, but not j > m? Remember that all variables wj

multiply an inequality, and inequalities can only be multiplied by non-negative numbers and
remain valid. However, all constraints j > m were equalities. Equalities remain valid even
after you multiply them by a negative number, so we don’t need to constrain wj ≥ 0, any wj

is fine.

Key Takeaway. In general, I strongly, strongly do not recommend trying to memorize a long list
of rules to figure out how to take the dual. Instead, I recommend trying to remember the following
key principles, and then applying them each time you want to take a dual:

• You make a variable wj for every constraint j.

• You put validity constraints on the wj which guarantee that any feasible solution must satisfy

∑
j

wj

(∑
i

Ajixi

)
≤

∑
j

wjbj .

If constraint j is an inequality, then we must have wj ≥ 0, or the inequality may not continue
to hold. If constraint j is an equality, then wj can be anything.

• You put usefulness constraints on the wj which guarantee that the new constraint derived
above actually says something useful about the objective function. That is,

∑
i

cixi ≤
∑
i

(∑
j

wjAji

)
xi ≤

∑
j

wjbj .

If xi ≥ 0 is guaranteed, you just need ci ≤
∑

j wjAji. Otherwise, you need ci =
∑

j wjAji.

• You minimize the RHS above to get the best upper bound.
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5 Sources
These notes were derived from the following sources. These sources also serve as great further
reading, if you would like to read more.

• [Goe15] Sections 1 and 4.
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